OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2714–2724
« Show journal navigation

High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display

Yu-Cheng Chang, Tai-Hsiang Jen, Chih-Hung Ting, and Yi-Pai Huang  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2714-2724 (2014)
http://dx.doi.org/10.1364/OE.22.002714


View Full Text Article

Acrobat PDF (1510 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A 2D/3D switchable and rotatable autostereoscopic display using a high-resistance liquid-crystal (Hi-R LC) lens array is investigated in this paper. Using high-resistance layers in an LC cell, a gradient electric-field distribution can be formed, which can provide a better lens-like shape of the refractive-index distribution. The advantages of the Hi-R LC lens array are its 2D/3D switchability, rotatability (in the horizontal and vertical directions), low driving voltage (~2 volts) and fast response (~0.6 second). In addition, the Hi-R LC lens array requires only a very simple fabrication process.

© 2014 Optical Society of America

1. Introduction

There is interest in pursuing more realistic images on displays permitted by advancements in technology. Because 3D displays provide depth information that is lacking in 2D displays, 3D displays play an important role in next-generation display technology. Autostereoscopic 3D displays have certainly entered the mainstream in recent years, thanks to the convenience of achieving the 3D effect without wearing glasses [1

1. B. Javidi and F. Okano, Three-dimensional television, video, and display technologies, (Springer-Verlag, 2002), pp. 461.

10

10. Y. Takaki, “Multi-view3-D display employing a flat-panel display with slanted pixel arrangement,” J. Soc. Inf. Disp. 18(7), 476–482 (2010). [CrossRef]

]. The most common methods in autostereoscopic 3D technology are fixed parallax barriers and lenticular lenses [11

11. W. Mphepo, Y.-P. Huang, and H.-P. D. Shieh, “Enhancing the brightness of parallax barrier based 3d flat panel mobile displays without compromising power consumption,” IEEE J. Displ. Technol. 6(2), 60–64 (2010). [CrossRef]

14

14. G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat-panel autostereoscopic displays: characterization and enhancement,” Proc. SPIE 3957, 153–164 (2000). [CrossRef]

]. However, the 2D image quality is degraded by the use of these approaches; when the ability to switch between 2D and 3D display modes is a necessary function, the image quality in 2D mode must be maintained. In addition, the use of portable devices has been rising sharply for the past decade, and the displays of such devices do not only show images in the vertical direction but also offer the horizontal mode (Fig. 1
Fig. 1 A sketch of rotatable functionality.
). Therefore, rotatable functionality is a standard requirement for a portable 3D display.

There are several technologies can achieve 2D/3D switchable functionality, such as sequential backlight systems [15

15. R. Brott and J. Schultz, “Directional backlight lightguide considerations for full resolution autostereoscopic 3D displays,” SID Symposium Digest of Technical Papers, 41, Issue 1, pp. 218–221, 2010. [CrossRef]

], switchable barriers [16

16. B. Lee and J. H. Park, “Overview of 3D/2D switchable liquid crystal display technologies,” Proc. SPIE 7618, 761806 (2010).

] and switchable LC lenses [17

17. C. W. L. IJzerman, S. T. de Zwart, and T. Dekker, “Design of 2D/3D switchable displays”, SID Symposium Digest, 36, Issue 1, pp. 98–101, 2005. [CrossRef]

31

31. Y. H. Fan, H. W. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11(23), 3080–3086 (2003). [CrossRef] [PubMed]

]. Sketches and the various features of these technologies are shown in Table 1

Table 1. Review of 2D/3D Switchable Technology

table-icon
View This Table
| View All Tables
. The main advantage of sequential backlight technology is that it can provide a full-resolution 3D image to the observer. However, the viewing freedom in 3D mode is narrow; a 3D image can be shown only in the normal direction. In contrast, switchable barriers and switchable LC lenses can provide wider viewing freedom than sequential backlight systems. However, only switchable barriers and switchable LC lenses have the potential for rotatable functionality. Nonetheless, the switchable barrier has a significant drawback: low brightness. Therefore, according to the above consideration of desirable features, an LC lens is the best candidate for mobile applications.

In this paper, we propose an internal-electrode LC lens with 2D/3D switchable and rotatable functionality by incorporating a high-resistance (Hi-R) layer [32

32. Y. C. Chen, L. Y. Liao, Y. P. Huang, and H. P. Shieh, “Extremely-fast focusing gradient driven liquid crystal lens driven by ultra-low operating voltages,” International Display Manufacturing Conference2011, PS-028.

]. The Hi-R LC lens is coated with a high-resistance layer within the cell, thus permitting the establishment of a continuous electric field with a gradient profile. In this manner, a lens-like profile can be formed. The most important concern when using a Hi-R layer is to avoid the electric-field distortions caused by crossed electrodes, thus maintaining high-performance 3D images in both the horizontal and vertical directions. A low operating voltage and fast switching time can be obtained using this design, as well. Moreover, the proposed Hi-R LC lens array requires only a very simple layout circuit with a similarly simple fabrication process.

2. High-resistance liquid crystal lens

2.1 Structure of single-layer Hi-R lenticular LC lens

Placing internal electrodes in an LC lens can yield lower driving voltages because the applied voltage can affect the LC molecules directly. However, because of the large slit between the electrodes, an internal-electrode LC lens can only share a weak electric energy and distribution of phase retardation. Most of the energy concentrates on the electrodes; the LC molecules can only be driven near the electrodes. Therefore, to overcome these issues, a high resistance-layer is coated onto the electrodes to generate a gradient voltage distribution in the LC cell. The LC molecules under the slits can also be affected by the electric field. As shown in Fig. 3(b)
Fig. 3 Sketches of the high-resistance liquid-crystal lens (Hi-R LC lens): (a) the structure in perspective view, (b) the driving method for the lenticular lens, and (c) the driving method for the flat electrode.
, VD and Vcom are applied to the side and central electrodes of the LC lens, respectively. According to the function of the resistance layer, the voltage takes on gradient distribution on the resistance layer, and the voltage gradually changes from high to low for better phase retardation [33

33. A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999). [CrossRef] [PubMed]

]. Therefore, the LC lens profile is not controlled by the fringing field but directly by the gradient voltage. In addition, if all electrodes on the same substrate are driven by Vcom, the entire layer will perform as a flat ground electrode. As shown in Fig. 3(b) and Fig. 3(c), by changing the driving method, we can switch the electrodes from a strip to a flat form in the same layer.

2.2 Modeling of Hi-R LC lens

To further investigate the high-resistance LC lens, we construct an R-C circuit model to determine the parameters of the LC cell, as shown in Fig. 4
Fig. 4 The R-C circuit model of the high-resistance LC lens.
. The resistance R in Fig. 4 is calculated using Eq. (1). To calculate the capacitance C in Fig. 4, the structure is first considered to be controlled by a uniform electrode field. The induced dipole moments of the two directions parallel and perpendicular to the LC direction are used. The equivalent polarization is shown in Eq. (2) and Eq. (3). The electric field is along the z direction, which induces the polarizations P andP. The equivalent capacitance, C, can be calculated from χz as shown in Eq. (4).

From the model, it can be seen that the resistance of the high-R layer should be controlled within the proper range. If the resistance is chosen to be too low, the resistance from the hetero junction will consume a large proportion of the applied voltage. However, if the resistance of the Hi-R layer is too large, only a small proportion of the current can reach the center region if V1 is higher than V0. These two situations both result in no phase retardation in the central region.
R=ρrArlr=ρrtrwrlr=Rslrwr
(1)
where ρr is the resistivity of the Hi-R layer. Ar and lrare the cross section and length of the resistance. Rs is the sheet resistance.

According to the equation, to have an optimized distribution of gradient voltage, the range of resistivity of the Hi-R layer is from 1 to 10 Ω·m.
Pz=|P|sinθ+|P|cosθ=ε0(χsin2θ+χcos2θ)E
(2)
χz=Pzε0E=χsin2θ+χcos2θ
(3)
C=εAd=1+χzdA
(4)
where d and A are the thickness and area of the meshed element, respectively.

2.3 Rotatable lenticular LC lens

Because of the increasing popularity of portable devices, the rotatable functionality of a display in 3D mode has become a requirement that must be considered. To achieve rotatable functionality in a lenticular LC lens, the two sets of stripe electrodes should be arranged in different directions. The structure is shown in Fig. 5 (a)
Fig. 5 Sketch of the rotatable high-resistance liquid-crystal lens (Hi-R LC lens): (a) without high-resistance layer, (b) with high-resistance layer, (c) the structure in the X-Z(horizontal) plane, and Y-Z(vertical) plane.
. However, when we apply a voltage to a top or bottom electrode in this structure, there is no full flat electrode on the other side. According to the structures and electrode fields of the LC cell, the LC cell will not behave as a lenticular lens. To form the shape of a lenticular lens, the variation of the electrode field should be changed only in one direction. The high-resistance layer can be used to overcome this issue.

According to the switchable functionality of the electrodes, we propose a rotatable lenticular LC lens with a high-resistance coating on both inner electrodes. To form a lenticular lens in two directions, the top electrodes and the bottom electrodes should be nearly perpendicular to each other. To achieve switchable functionality in two directions, the top and bottom electrodes are coated with high-resistance material, as shown in Fig. 5 (b). When all bottom electrodes are connected to Vcom and the top electrodes are driven by alternating voltages, VD and Vcom, an LC lenticular lens shape will form in the horizontal direction, as shown in Fig. 5 (c). Because of the application of the same driving voltage on each electrode, the bottom electrodes behave as a full electrode with the ground voltage. However, the voltage distribution on the top side becomes a gradient and continuous distribution because of the function of the high-resistance layer.

Furthermore, in the vertical direction, the LC lens can be operated in the same manner, as shown in Fig. 5 (c). The bottom electrodes are driven by VD and Vcom alternately, and all electrodes on the top are driven by Vcom.

3. Experimental results

3.1 Specifications

We designed the Hi-R LC lens to generate 2 views of an autostereoscopic image in the vertical direction on an LCD panel and 4 views of an autostereoscopic image in the horizontal direction on the same panel. The specifications and parameters are shown in Table 2

Table 2. Specification of Hi-R LC Lens and Panel

table-icon
View This Table
| View All Tables
.

3.2 Fringe pattern

To prove the effect of the high-resistance layer, a fringe pattern is an obvious method of demonstrating the result of the LC phase. In Fig. 6
Fig. 6 The experimental results of a fringe pattern in a cross-electrode LC lens (a) with high-resistance layers and (b) without high-resistance layers.
, the operated LC cell is observed under a crossed polarizer; the alternate white and black patterns represent the phase variations. Here, VD and Vcom are 2 and 0 volts, respectively. And the waveforms were square wave with constant 1 KHz frequency. The phase variation in the LC lens without the Hi-R layers is discontinuous and bent under the horizontal electrodes, as shown in Fig. 6 (b). Because Vcom is applied only on the electrodes of the bottom substrate, the electric field cannot reach the centers of the slits between the electrodes. Thus, the electric fields of the vertical electrodes bend strongly toward the horizontal electrodes. Therefore, without the Hi-R layers, the electric-field distribution cannot form a lenticular LC lens profile.

In contrast, the fringe pattern in the Hi-R LC lens exhibits a continuous and smooth phase variation, so it can produce a good lens shape, as shown in Fig. 6 (a). The result demonstrates that the neff does not change gradually near the positions of the electrodes. Although there is a high-resistance layer, the electrode and high-resistance layer are connected in parallel. This means that the effective resistance must be smaller than the total resistance of the electrode, and the Hi-R layer, so the electrode will interfere with the driven gradient.

Therefore, a narrower electrode width will generate better performance. The electrical fields propagate smoothly from the vertical electrode to the planar electrode, which is a horizontal electrode coated with a Hi-R layer. Therefore, the phase distribution of the lenticular lens in the Hi-R LC cell is better than that in the LC cell without Hi-R layers.

3.3 Rotatable function

To demonstrate the 2D/3D switchable and rotatable functionalities on the same LC lens, the focusing ability becomes a criterion by which to judge the direction of the lenticular lens. The focusing ability of the Hi-R LC lens can be observed by using a parallel light, and the CCD locate at the focal plane of LC lenticular lens. When the parallel light passes through an LC cell voltage applied to the cell, there is no significant pattern on the CCD, as shown in Fig. 7 (a)
Fig. 7 Test of the focusing ability the Hi-R LC Lens: (a) without any driving voltage, (b) operating the Hi-R LC lens in the horizontal direction, and (c) operating the Hi-R LC lens in the vertical direction (Media 1).
. If the driving voltage is applied along the vertical direction of the cell, the LC lenticular lens array forms in the horizontal direction. Therefore, the focused lines appear on the CCD as shown in Fig. 7 (b). The result is similar when the driving voltage is applied to the horizontal electrodes; the LC lenticular lens array forms in the vertical direction, as shown in Fig. 7 (c). The full video is available at the following web address: http://youtu.be/5LA9o0XPABw.

3.4 Angular crosstalk distribution

The angular distribution of the 2D/3D switchable autostereoscopic display achieved by operating the Hi-R LC lens array in the horizontal direction is shown in Fig. 8
Fig. 8 The angular distribution of the Hi-R LC Lens in (a) the vertical direction and (b) the horizontal direction.
. The Hi-R LC lens simulation results indicate that defects near the electrodes cause leakage. The width ratio of all electrodes and lenses corresponds to a pitch of approximately 0.3. This defect will cause a high crosstalk in 3D mode. When the cell is operated at 1.5 volts, the multi-view crosstalk in the horizontal direction is 34.3%, as shown in Fig. 8 (b). In the vertical direction, the width ratio of all electrodes and lens corresponds to a pitch of approximately 0.06, as shown in Fig. 8 (a). When the cell is operated at 2 volts, the crosstalk in the vertical direction is 9.8%.

To find out what is the reason will cause the crosstalk on Hi-R lens, the effective refractive index (neff) is measured and show on Fig. 9
Fig. 9 The comparison of the effective refractive index between ideal lens and Hi-R LC Lens.
. Compare with the profile of ideal lens, the distribution of neff is too flat at the center and the edge of LC-lens. Therefore, the light will not refract to the designed angle. We believe this phenomenon comes from the electrode width of the Hi-R LC lens. Because of manufacturing limitations, the electrode width of the Hi-R LC lens of our sample is around 15 μm. According to these parameters, the effective refractive index was simulated using 2DiMOS. The ratio of electrode width to lens size varies from 10% to 40%, and the sketch is shown on Fig. 10 (a) and (b)
Fig. 10 The influence of the ratio of electrode width on the effective refractive index (neff): (a) structure of low ratio of electrode width, (b) structure of high ratio of electrode width, (c) various ratios of electrode width and (d) the ideal case.
. The parameters of LC lens on simulation are shown in Table 3

Table 3. Specification of Hi-R LC Lens on Simulation

table-icon
View This Table
| View All Tables
. The result indicates that the neff does not change gradually near the position of the electrode, as shown in Fig. 10 (c). Although there is a high-resistance layer, the electrode and the high-resistance layer are connected in parallel. This means that the effective resistance must be smaller than the total resistance of the electrode and the Hi-R layer, and the electrode with interfere with the driven gradient. Therefore, a narrower electrode width will generate better performance. Figure 10 (d) shows the neff distribution of an ideal Hi-R LC lens with a very small electrode width. Therefore, lower crosstalk could be achieved if narrower electrodes were used. The 5μm electrode width can be easily achieved by conventional TFT-LCD company, thus shall be able to yield much lower crosstalk for the dual-directional Hi-R LC-lens.

3.5 Response time

To fit the power of the lens, the cell gap of LC Lens is 50 μm in our experiment. According to rising time, τriseof LC devices, larger cell gap results in slow focusing time which is proportional to d2 from relaxing state to focusing state, as Eq. (5) shows.
τrise=γ1d2/Kπ2(V/Vth)21
(5)
where τrise is the function of cell gap d, rotational viscosity γ1, elastic constant K, threshold voltage Vth, and applied voltage V. To overcome slow response of LC cells, over-drive is employed for accelerating the response times in LCD industry. By optimized the over driving voltages and switching to target operation, the LC response time can be much reduced. In our experiment, the optimized over-drive value is about 4 volts, and the rising time is close to 0.6 second. Figure 11
Fig. 11 The sequential photograph of focusing of LC lens driven by over-drive method: (a) 0 sec, (b) 0.2 sec, (c) 0.4 sec and (d) 0.6 sec.
shows the sequential photograph of LC lens form non-focusing to focusing on different period.

To fit the power of the lens, the cell gap of LC Lens is 50 μm in our experiment. According to rising time, τriseof LC devices, larger cell gap results in slow focusing time which is proportional to d2 from relaxing state to focusing state, as Eq. (5) shows.
τrise=γ1d2/Kπ2(V/Vth)21
(6)
where τrise is the function of cell gap d, rotational viscosity γ1, elastic constant K, threshold voltage Vth, and applied voltage V. For current LCD, which has cell gap around 5um, the response time is about 6ms with over-driving technology [34

34. H. Okumura and H. FujiwaraH. OkumuraH. FujiwaraH. Okumuraand H.Fujiwara, “A new low-image-lag drive method for large-size LCTVs,” J. Soc. Inf. Disp. 1(3), 335–339 (1993). [CrossRef]

]. According to the listed equation, LC-lens with 50um cell gap shall be around 6ms × 102 = 600ms. In our experiment, the optimized over-drive value is about 4 volts, and from the experiment results, our rising time is close to 600ms which is similar to the theoretical calculation. Figure 11 shows the sequential photograph of LC lens form non-focusing to focusing on different period.

4. Conclusion

A High-Resistance Liquid Crystal (Hi-R LC) lens that is capable of 2D/3D switching and 3D rotation is proposed. Using high-resistance layers, a continuous gradient electric-field distribution can be generated within the cell. Consequently, high-quality 3D images for horizontal and vertical viewing can be obtained. In our prototype, the crosstalk of the two-view system is below 10%, but in the rotated direction, the crosstalk of the multi-view system is approximately 34.3% because of the slanted 4-view design, but could be much improved by narrowing the electrode width. The Hi-R LC lens requires only a low operating voltage and a simple driving system. Finally, the Hi-R LC lens was successfully implemented on an LCD for 2D/3D switching and 3D rotation functionality, thereby demonstrating its high potential for application in future mobile autostereoscopic displays.

Acknowledgments

This work was partially supported by the National Science Council, Taiwan, for Academic Projects No. NSC101-2221-E-009-120-MY3.

References and links

1.

B. Javidi and F. Okano, Three-dimensional television, video, and display technologies, (Springer-Verlag, 2002), pp. 461.

2.

H. H. Refai, “Static volumetric three-dimensional display,” IEEE J. Displ. Technol. 5(10), 391–397 (2009). [CrossRef]

3.

M. Gately, Y. Zhai, M. Yeary, E. Petrich, and L. Sawalha, “A three-dimensional swept volume display based on led arrays,” IEEE J. Displ. Technol. 7(9), 503–514 (2011). [CrossRef]

4.

C. V. Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE, vol.3012, pp.179–187, 1997.

5.

J. Y. Son and B. Javidi, “Three-dimensional image methods based on multi-view images,” IEEE J. Displ. Technol. 1(1), 125–140 (2005). [CrossRef]

6.

H. H. Refai, “Static volumetric three-dimensional display,” IEEE J. Displ. Technol 5(10), 391–397 (2009). [CrossRef]

7.

M. Gately, Y. Zhai, M. Yeary, E. Petrich, and L. Sawalha, “A threedimensional swept volume display based on LED arrays,” IEEE J. Displ. Technol. 7(9), 503–514 (2011). [CrossRef]

8.

J.-Y. Son and B. Javidi, “Three-dimensional image methods based on multi-view images,” IEEE J. Displ. Technol 1(1), 125–140 (2005). [CrossRef]

9.

Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011). [CrossRef] [PubMed]

10.

Y. Takaki, “Multi-view3-D display employing a flat-panel display with slanted pixel arrangement,” J. Soc. Inf. Disp. 18(7), 476–482 (2010). [CrossRef]

11.

W. Mphepo, Y.-P. Huang, and H.-P. D. Shieh, “Enhancing the brightness of parallax barrier based 3d flat panel mobile displays without compromising power consumption,” IEEE J. Displ. Technol. 6(2), 60–64 (2010). [CrossRef]

12.

C.-H. Chen, Y.-P. Huang, S.-C. Chuang, C.-L. Wu, H.-P. D. Shieh, W. Mphepö, C.-T. Hsieh, and S.-C. Hsu, “Liquid crystal panel for high efficiency barrier type autostereoscopic three-dimensional displays,” Appl. Opt. 48(18), 3446–3454 (2009). [CrossRef] [PubMed]

13.

M. Lambooij, K. Hinnen, and C. Varekamp, “Emulating autostereoscopic lenticular designs,” IEEE J. Displ. Technology 8(5Issue 5), 283–290 (2012). [CrossRef]

14.

G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat-panel autostereoscopic displays: characterization and enhancement,” Proc. SPIE 3957, 153–164 (2000). [CrossRef]

15.

R. Brott and J. Schultz, “Directional backlight lightguide considerations for full resolution autostereoscopic 3D displays,” SID Symposium Digest of Technical Papers, 41, Issue 1, pp. 218–221, 2010. [CrossRef]

16.

B. Lee and J. H. Park, “Overview of 3D/2D switchable liquid crystal display technologies,” Proc. SPIE 7618, 761806 (2010).

17.

C. W. L. IJzerman, S. T. de Zwart, and T. Dekker, “Design of 2D/3D switchable displays”, SID Symposium Digest, 36, Issue 1, pp. 98–101, 2005. [CrossRef]

18.

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010). [CrossRef]

19.

S. Sato, “Liquid-crystal lens–cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979). [CrossRef]

20.

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43(2), 652–653 (2004). [CrossRef]

21.

H. W. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007). [CrossRef] [PubMed]

22.

H. K. Hong, S. M. Jung, B. J. Lee, and H. H. Shin, “Electric-Field-driven LC lens for 3-D/2-D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009). [CrossRef]

23.

Y. P. Huang and C. W. Chen, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,”, ” IEEE J. Displ. Technol. 8(11), 650–655 (2012).

24.

C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for fast switching liquid crystal lens on 2D/3D switchable auto-stereoscopic display,” IEEE J. Displ. Technol. 8(10), 559–561 (2012).

25.

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979). [CrossRef]

26.

G. J. Woodgate and J. Harrold, “Key design issue for autostereoscopic 2-D/3-D displays,” J. Soc. Inf. Disp. 14(5), 421–426 (2006). [CrossRef]

27.

G. J. Woodgate and J. Harrold, “Efficiency analysis for multi-view spatially multiplexed autostereoscopic 2-D/3-D displays,” J. Soc. Inf. Disp. 15(11), 873–881 (2007). [CrossRef]

28.

O. H. Willemsen, S. T. De Zwart, M. G. H. Hiddink, and O. Willemsen, “2-D/3-D switchable displays,” J. Soc. Inf. Disp. 14(8), 715–722 (2006). [CrossRef]

29.

H. K. Hong, S. M. Jung, B. J. Lee, and H. H. Shin, “Electric-field-driven LC lens for 3D/2D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009). [CrossRef]

30.

J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” J. Displ. Technol. 7(4), 215–219 (2011). [CrossRef]

31.

Y. H. Fan, H. W. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11(23), 3080–3086 (2003). [CrossRef] [PubMed]

32.

Y. C. Chen, L. Y. Liao, Y. P. Huang, and H. P. Shieh, “Extremely-fast focusing gradient driven liquid crystal lens driven by ultra-low operating voltages,” International Display Manufacturing Conference2011, PS-028.

33.

A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999). [CrossRef] [PubMed]

34.

H. Okumura and H. FujiwaraH. OkumuraH. FujiwaraH. Okumuraand H.Fujiwara, “A new low-image-lag drive method for large-size LCTVs,” J. Soc. Inf. Disp. 1(3), 335–339 (1993). [CrossRef]

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

History
Original Manuscript: November 27, 2013
Revised Manuscript: January 28, 2014
Manuscript Accepted: January 28, 2014
Published: January 30, 2014

Citation
Yu-Cheng Chang, Tai-Hsiang Jen, Chih-Hung Ting, and Yi-Pai Huang, "High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display," Opt. Express 22, 2714-2724 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2714


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Javidi and F. Okano, Three-dimensional television, video, and display technologies, (Springer-Verlag, 2002), pp. 461.
  2. H. H. Refai, “Static volumetric three-dimensional display,” IEEE J. Displ. Technol. 5(10), 391–397 (2009). [CrossRef]
  3. M. Gately, Y. Zhai, M. Yeary, E. Petrich, L. Sawalha, “A three-dimensional swept volume display based on led arrays,” IEEE J. Displ. Technol. 7(9), 503–514 (2011). [CrossRef]
  4. C. V. Berkel and J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE, vol.3012, pp.179–187, 1997.
  5. J. Y. Son, B. Javidi, “Three-dimensional image methods based on multi-view images,” IEEE J. Displ. Technol. 1(1), 125–140 (2005). [CrossRef]
  6. H. H. Refai, “Static volumetric three-dimensional display,” IEEE J. Displ. Technol 5(10), 391–397 (2009). [CrossRef]
  7. M. Gately, Y. Zhai, M. Yeary, E. Petrich, L. Sawalha, “A threedimensional swept volume display based on LED arrays,” IEEE J. Displ. Technol. 7(9), 503–514 (2011). [CrossRef]
  8. J.-Y. Son, B. Javidi, “Three-dimensional image methods based on multi-view images,” IEEE J. Displ. Technol 1(1), 125–140 (2005). [CrossRef]
  9. Y. Takaki, K. Tanaka, J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19(5), 4129–4139 (2011). [CrossRef] [PubMed]
  10. Y. Takaki, “Multi-view3-D display employing a flat-panel display with slanted pixel arrangement,” J. Soc. Inf. Disp. 18(7), 476–482 (2010). [CrossRef]
  11. W. Mphepo, Y.-P. Huang, H.-P. D. Shieh, “Enhancing the brightness of parallax barrier based 3d flat panel mobile displays without compromising power consumption,” IEEE J. Displ. Technol. 6(2), 60–64 (2010). [CrossRef]
  12. C.-H. Chen, Y.-P. Huang, S.-C. Chuang, C.-L. Wu, H.-P. D. Shieh, W. Mphepö, C.-T. Hsieh, S.-C. Hsu, “Liquid crystal panel for high efficiency barrier type autostereoscopic three-dimensional displays,” Appl. Opt. 48(18), 3446–3454 (2009). [CrossRef] [PubMed]
  13. M. Lambooij, K. Hinnen, C. Varekamp, “Emulating autostereoscopic lenticular designs,” IEEE J. Displ. Technology 8(5Issue 5), 283–290 (2012). [CrossRef]
  14. G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, D. Ezra, “Flat-panel autostereoscopic displays: characterization and enhancement,” Proc. SPIE 3957, 153–164 (2000). [CrossRef]
  15. R. Brott and J. Schultz, “Directional backlight lightguide considerations for full resolution autostereoscopic 3D displays,” SID Symposium Digest of Technical Papers, 41, Issue 1, pp. 218–221, 2010. [CrossRef]
  16. B. Lee, J. H. Park, “Overview of 3D/2D switchable liquid crystal display technologies,” Proc. SPIE 7618, 761806 (2010).
  17. C. W. L. IJzerman, S. T. de Zwart, and T. Dekker, “Design of 2D/3D switchable displays”, SID Symposium Digest, 36, Issue 1, pp. 98–101, 2005. [CrossRef]
  18. Y. P. Huang, L. Y. Liao, C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010). [CrossRef]
  19. S. Sato, “Liquid-crystal lens–cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979). [CrossRef]
  20. H. W. Ren, Y. H. Fan, S. Gauza, S. T. Wu, “Tunable-focus cylindrical liquid crystal lens,” Jpn. J. Appl. Phys. 43(2), 652–653 (2004). [CrossRef]
  21. H. W. Ren, D. W. Fox, B. Wu, S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007). [CrossRef] [PubMed]
  22. H. K. Hong, S. M. Jung, B. J. Lee, H. H. Shin, “Electric-Field-driven LC lens for 3-D/2-D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009). [CrossRef]
  23. Y. P. Huang, C. W. Chen, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,”, ” IEEE J. Displ. Technol. 8(11), 650–655 (2012).
  24. C. W. Chen, Y. P. Huang, P. C. Chen, “Dual direction overdriving method for fast switching liquid crystal lens on 2D/3D switchable auto-stereoscopic display,” IEEE J. Displ. Technol. 8(10), 559–561 (2012).
  25. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979). [CrossRef]
  26. G. J. Woodgate, J. Harrold, “Key design issue for autostereoscopic 2-D/3-D displays,” J. Soc. Inf. Disp. 14(5), 421–426 (2006). [CrossRef]
  27. G. J. Woodgate, J. Harrold, “Efficiency analysis for multi-view spatially multiplexed autostereoscopic 2-D/3-D displays,” J. Soc. Inf. Disp. 15(11), 873–881 (2007). [CrossRef]
  28. O. H. Willemsen, S. T. De Zwart, M. G. H. Hiddink, O. Willemsen, “2-D/3-D switchable displays,” J. Soc. Inf. Disp. 14(8), 715–722 (2006). [CrossRef]
  29. H. K. Hong, S. M. Jung, B. J. Lee, H. H. Shin, “Electric-field-driven LC lens for 3D/2D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009). [CrossRef]
  30. J. G. Lu, X. F. Sun, Y. Song, H. P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” J. Displ. Technol. 7(4), 215–219 (2011). [CrossRef]
  31. Y. H. Fan, H. W. Ren, S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11(23), 3080–3086 (2003). [CrossRef] [PubMed]
  32. Y. C. Chen, L. Y. Liao, Y. P. Huang, H. P. Shieh, “Extremely-fast focusing gradient driven liquid crystal lens driven by ultra-low operating voltages,” International Display Manufacturing Conference2011, PS-028.
  33. A. F. Naumov, G. D. Love, M. Yu. Loktev, F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999). [CrossRef] [PubMed]
  34. H. Okumura, H. FujiwaraH. Okumuraand H.Fujiwara, “A new low-image-lag drive method for large-size LCTVs,” J. Soc. Inf. Disp. 1(3), 335–339 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MP4 (43006 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited