OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3054–3062
« Show journal navigation

Engineered surface Bloch waves in graphene-based hyperbolic metamaterials

Yuanjiang Xiang, Jun Guo, Xiaoyu Dai, Shuangchun Wen, and Dingyuan Tang  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3054-3062 (2014)
http://dx.doi.org/10.1364/OE.22.003054


View Full Text Article

Acrobat PDF (2138 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A kind of tunable hyperbolic metamaterial (HMM) based on the graphene-dielectric layered structure at near-infrared frequencies is presented, and the engineered surface Bloch waves between graphene-based HMM and isotropic medium are investigated. Our calculations demonstrate that the frequency and frequency range of surface Bloch waves existence can be tuned by varying the Fermi energy of graphene sheets via electrostatic biasing. Moreover, we show that the frequency range of surface Bloch waves existence can be broadened by decreasing the thickness of the dielectric in the graphene-dielectric layered structure or by increasing the layer number of graphene sheets.

© 2014 Optical Society of America

1. Introduction

Surface electromagnetic waves (SEWs) are a special type of waves that are confined at the interface between two media with different properties [1

1. B. E. Sernelius, Surface Modes in Physics (John Wiley, 2001).

, 2

2. J. A. Polo Jr and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photonics Rev. 5(2), 234–246 (2011). [CrossRef]

]. One of the best known examples of SEWs is surface plasmon polariton (SPP), which is formed at the interfaces between metals and dielectrics [3

3. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

, 4

4. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005). [CrossRef]

]. SPPs only exist for TM polarization and there is no surface modes exist for TE polarization. SPP has attracted a wide spread attention in the last decade mainly due to their applications in sensing, microscopy, or integrated optics [5

5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

, 6

6. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007). [CrossRef]

]. However, when one of the two media at the interface is periodic structures (photonic crystals or superlattices), the Bloch surface waves (BSWs) may appear at the boundary within the photonic bandgaps [7

7. P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977). [CrossRef]

, 8

8. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface-waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978). [CrossRef]

]. It has also been shown the lateral conðnement of the BSWs in the waveguide is well described by the 2D Snell’s [9

9. T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96(15), 151101 (2010). [CrossRef]

]. BSWs have potential applications in optical sensing [10

10. E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007). [CrossRef]

12

12. M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett. 91(25), 253125 (2007). [CrossRef]

], enhancement of Goos-Hanchen shift [13

13. Y. H. Wan, Z. Zheng, W. J. Kong, X. Zhao, Y. Liu, Y. S. Bian, and J. S. Liu, “Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave,” Opt. Express 20(8), 8998–9003 (2012). [CrossRef] [PubMed]

], and surface-enhanced Raman spectroscopy [14

14. S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013). [CrossRef]

]. For BSWs, the Bloch wavevector is perpendicular to the interface of the periodic structure and the dielectric layer, and hence the Bloch wavevector is not propagating along the interface. Moreover, most recently, Vukovic et al. proposed another surface wave propagating in metal-dielectric superlattices and isotropic dielectric medium where the Bloch wavevector is parallel to the interface of the two media [15

15. S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric supperlattices,” Appl. Phys. Lett. 95(4), 041902 (2009). [CrossRef]

]. This surface wave has been named as surface Bloch waves owing to the Bloch wave propagating along the interface [15

15. S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric supperlattices,” Appl. Phys. Lett. 95(4), 041902 (2009). [CrossRef]

].

Hyperbolic metamaterial (HMM) is a uniaxial anisotropic medium having the hyperbolic form of the dispersion relation [16

16. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003). [CrossRef] [PubMed]

]. HMMs can be realized at optical frequencies using metal-dielectric multilayers [17

17. Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010). [CrossRef]

, 18

18. T. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012). [CrossRef]

] or metallic nanorods/nanowires in a dielectric host [19

19. M. A. Noginov, A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009). [CrossRef]

, 20

20. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010). [CrossRef] [PubMed]

], and at terahertz and infrared frequencies using semiconductor-dielectric multilayers [21

21. C. Rizza, A. Ciattoni, E. Spinozzi, and L. Columbo, “Terahertz active spatial filtering through optically tunable hyperbolic metamaterials,” Opt. Lett. 37(16), 3345–3347 (2012). [CrossRef] [PubMed]

, 22

22. G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi 4, 295–297 (2010).

]. HMM promises a variety of potential applications including negative refraction [23

23. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007). [CrossRef] [PubMed]

, 24

24. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008). [CrossRef] [PubMed]

], broadband Purcell effect [20

20. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010). [CrossRef] [PubMed]

, 25

25. Z. Jacob, I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012). [CrossRef]

], imaging hyperlens [26

26. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006). [CrossRef] [PubMed]

, 27

27. Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). [CrossRef] [PubMed]

], optical waveguide [28

28. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009). [CrossRef] [PubMed]

, 29

29. Y. He, S. He, and X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett. 37(14), 2907–2909 (2012). [CrossRef] [PubMed]

], and perfect thermal emitters [30

30. S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012). [CrossRef] [PubMed]

].

Recently, graphene has attracted intensive scientific interest owing to its incredible physical properties showing great potential applications in nano-electronic devices and optoelectric devices with ultrahigh electron mobility, ultrafast relaxation time for photo-excited carriers, and gate variable optical conductivity [31

31. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009). [CrossRef]

]. Graphene plasmonics have generated great interest among scientific community because of the ability of graphene to tune the plasmon dispersion by varying the chemical potential [32

32. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012). [CrossRef]

]. It seems to be a good candidate for designing tunable optical device that operates in both THz and optical frequency ranges [33

33. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011). [CrossRef] [PubMed]

]. Most recently, graphene-based HMMs composed of stacked graphene sheets separated by thin dielectric layers have been proposed and investigated [34

34. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013). [CrossRef]

, 35

35. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013). [CrossRef] [PubMed]

], it has been demonstrated that such graphene-based HMMs can be used for the negative refraction at THz frequencies [36

36. K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013). [CrossRef]

], the spontaneous emission enhancement [34

34. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013). [CrossRef]

, 35

35. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013). [CrossRef] [PubMed]

], the perfect absorption [37

37. I. S. Nefedov, C. A. Valaginnopoulos, and L. A. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15(11), 114003 (2013). [CrossRef]

], tunable broadband hyperlens [38

38. T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express 21(18), 20888–20899 (2013). [CrossRef] [PubMed]

], tunable infrared waveguide [39

39. B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013). [CrossRef] [PubMed]

], and so on. However, these HMMs have be realized and investigated mainly at THz frequencies, and mid- or far-infrared frequencies. Graphene-based HMMs at the near-infrared frequencies and visible light are still not demonstrated. In the present paper, we suggest a new class of tunable HMMs for near-infrared frequencies based on the graphene-dielectric layered structure, and reveal that such graphene structures can support a controllable surface Bloch wave between graphene-based HMM and isotropic medium.

2. Graphene-based HMMs at the near-infrared frequencies

2.1 The optical properties of graphene sheets

2.2 Bulk Bloch waves of the graphene-dielectric layered structure

Assuming that the electric (magnetic) field is in the form Aexp(ikzz+ikxx+ikyyiωt), the dispersion relation of Bloch modes in the infinite layered media is described by the two-components bulk Bloch waves,
cos(kzt)=cos(kgtg)cos(kdtd)12(F1F2+F2F1)sin(kgtg)sin(kdtd),
(2)
where kg=(εgk02k2)1/2, kd=(εdk02k2)1/2, k0=ω/c, k2=kx2+ky2, F1=εg/kg, F2=εd/kd for p-polarized mode, and F1=1/kg, F2=1/kdfor s-polarized mode.

2.3 Dispersion relation of graphene-dielectric layered structure in the subwavelength limit

In the subwavelength limit, i.e., kgtg<<1 and kdtd<<1, one can expand cos(kiti) and sin(kiti) in a Taylor series, cos(kiti)=1(kiti)2/2+O((kiti)2) and sin(kiti)=kiti+O(kiti). Substituting them into Eq. (2) and neglecting the high-order terms, we have the dispersion relationship simplified as
sin2(kzt/2)ε+t24k2ε||=t24k02,
(3)
sin2(kzt/2)+t24k2=k02εt24,
(4)
for p-polarization and for s-polarization, respectively, where ε=fgεg+fdεd, ε||=(fg/εg+fd/εd)1, fg=tg/t and fd=td/t are the filling ratio of the graphene sheet and dielectric, respectively. Equations (3) and (4) give the dispersion relations for the bulk waves in the infinite graphene-dielectric layered metamaterial in the subwavelength limit. If we adopt additional approximation kzt<<1, these equations will recover to the dispersion relations in the uniaxial crystal, kz2/ε+k2/ε||=k02 and kz2+k2=εk02, respectively.

2.4 Effective permittivity and hyperbolic dispersion of graphene based HMMs

As an example, in Fig. 1(b) we plot the effective permittivities ε and ε||. Here, we assume that the Fermi-energy of graphene EF=0.50eV, and the other parameters are T=300K, tg=0.35nm, τ=0.5ps. PbS is selected as the dielectric layer with relative permittivity εd=18.8 and slab thickness td=10nm, where the absorption loss of dielectric has been neglected. It is seen from Fig. 1(b) that ε|| exhibits resonant behavior and ε almost keeps constant. Moreover, Re(ε||)<0 and Re(ε)>0 near the wavelength of optical communication λ=1550nm, hence Eq. (6) denotes a dispersion curve of hyperboloid. Figure 1(c) illustrates this case at λ=1550nm and 1540nm. These dispersion curves have two sheets and the wavelength range of the hyperbolic band is determined by the condition ε||=0.

2.5 Engineered effective permittivity of graphene based HMMs

The wavelength of the hyperbolic dispersion curve can be electrically controlled by an applied gate voltage on the graphene sheet, which is demonstrated in Fig. 2(a).
Fig. 2 The influences of (a) Fermi energy EF, (b) thickness of dielectric td, and (c) number of graphene sheets N on the real part of ε||. Where N = 1, td = 10nm in (a), N = 1, EF = 0.50eV in (b), and td = 10nm, EF = 0.50eV in (c), the gray line is the free-space light line.
It is clear that the resonant behavior of ε|| can be tuned by varying the Fermi energy EF, and the resonant wavelengths of ε|| move to the shorter wavelength with the increases of Fermi energy EF. Actually, the resonant wavelength can be tuned to the visible light if we apply enough voltage to the graphene sheet. Therefore, our graphene-based layered structure has the potential to achieve various HMM-based optical devices.

In addition to the Fermi energy, the resonant behavior of ε|| is dependent on the fill factions of dielectric and graphene sheet, as shown in Figs. 2(b) and 2(c). Decrease in thickness of dielectric td leads to the decrease of fill factor of dielectric fd and increase of fill factor of dielectric fg, hence the graphene sheets are getting more and more important in the HMMs. From Fig. 2(b), we find that the resonant wavelength of ε|| shifts to longer wavelength as the thickness td is decreased, and the peak value of ε|| is enhanced. Furthermore, it is important that the wavelength range of the negative ε|| is also extended simultaneously. These properties are significant to control the surface Bloch wave, which will be illuminated later on. Aside from the thickness of dielectric td, the thickness of graphene sheets also play great role in the behavior of ε||, as shown in Fig. 2(c). Here the thickness of graphene is controlled by the number of layers of graphene sheets N, tg=Ntg and σ=Nσ. It can be observed that the resonant wavelength shifts to longer wavelength quickly as the number layers N is increased, and the peak value of ε|| and wavelength range of negative ε|| are enhanced obviously.

3. Surface Bloch waves in graphene-based hyperbolic metamaterials

3.1 The dispersion relation of the Bloch waves

Now we consider the interface between infinite graphene-dielectric layered metamaterial and isotropic medium, as shown in Fig. 1(a). We assume that the surface Bloch wave can propagate in the yz-surface, and φ is the propagation angle with respect to the y-axis. It was shown that Dyakonov surface waves exist based on the birefringent properties of metal-dielectric layered metamaterials in the long-wavelength limit [40

40. C. J. Zapata-Rodríguez, J. J. Miret, S. Vuković, and M. R. Belić, “Engineered surface waves in hyperbolic metamaterials,” Opt. Express 21(16), 19113–19127 (2013). [CrossRef] [PubMed]

], in our structure, Dyakonov surface waves can also exist within an interval of propagation angles φ. However, in the present paper, for simplicity in the discussion we only consider a special case, φ=π/2 for p-polarization. For φ=0, kz=0, Eq. (3) can be simplified as, kx2+ky2=ε||k02. For φ=π/2, ky=0, Eq. (3) can be expressed as,
sin2(kzt/2)ε+t24kx2ε||=t24k02.
(5)
Equation (5) is similar to the result in metamaterial and metal-dielectric superlattices [15

15. S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric supperlattices,” Appl. Phys. Lett. 95(4), 041902 (2009). [CrossRef]

].

3.2 The dispersion relation of the surface Bloch wave

Using the boundary conditions, we can obtain the dispersion relation for the surface Bloch wave,
ε||εsin2(kzt/2)t2/4ε||k02/ε||+kz2εsk02εs=0,
(6)
for φ=π/2. Here, εs is the permittivity of semi-infinite dielectric. The dispersion relation Eq. (6) can be applied to the arbitrary value surface Bloch wavevector kz. In the additional approximation, kzt<<1, Eq. (6) can be written as
ε||kz2/εε||k02/ε||+kz2εdk02/εd=0,
(7)
which is formally analogous to the dispersion relation of the surface wave in the indefinite metamaterial. The condition for this surface wave existence is ε||<0, which is similar to the condition by considering an interface between a dielectric and a metal. This surface wave has been termed as surface Bloch wave [15

15. S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric supperlattices,” Appl. Phys. Lett. 95(4), 041902 (2009). [CrossRef]

], and the properties of this surface wave will be discussed as follows.

3.3 Engineered surface Bloch waves in graphene-based HMMs and isotropic medium

We consider the waves propagating along the interface between semi-infinite graphene-based HMM and semi-infinite dielectric (vacuum) with εs=1. Figure 3 gives the dispersion of surface Bloch wave with the effective parameters shown in Fig. 2(a), the gray line is the free-space light line.
Fig. 3 The dispersion of p-polarized surface Bloch wave at different Fermi energy, where N = 1, td = 10nm, and the gray line is the free-space light line.
From the dispersion curve we find that the p-polarized surface Bloch wave exists near the wavelength λ=1550nm where ε||<0. Moreover, the frequency ranges of surface Bloch wave can be tuned by changing the Fermi energy, which is consistent with the dependence of the negative permittivity ε|| on the Fermi energy as shown in Fig. 2(a). When we decrease the Fermi energy EF, the dispersion curve moves to the lower frequency (longer wavelength); when we increase the Fermi energy EF, the dispersion curve moves to the higher frequency (shorter wavelength) . This property suggests that the surface Bloch wave can be engineered by the Fermi energy of the graphene sheets.

In Fig. 3, the frequency range for surface Bloch wave existence is narrow. However it can be extended by controlling the fill factors of the dielectric and graphene sheet in the HMMs as shown in Fig. 4.
Fig. 4 The dependences of dispersion of p-polarized surface Bloch wave on (a) the thickness of dielectric td and (b) the number of graphene sheets. Where N = 1, EF = 0.50eV in (a) and td = 10nm, EF = 0.50eV in (b).
First, we discuss the influence of the thickness of dielectric td on the dispersion curve (see Fig. 4(a)). We find that both the upper and the lower limits move to longer wavelength as td is decreased, however the lower limit moves more quickly than the upper limit, which leads to the broader frequency range for surface Bloch wave existence. This is consistent with the effect of td on the wavelength range of negative ε||. The frequency range for surface Bloch wave existence can also be broadened by increasing the number of graphene layers, as shown in Fig. 4(b). The dependence of frequency range for surface Bloch wave existence on the thickness of dielectric and layer number of graphene sheets provides more degree of freedom to control the surface Bloch wave at the near-infrared frequencies.

4. Conclusions

In conclusion, we have presented a graphene-based layered structure as the hyperbolic metamaterials (HMMs) at the near-infrared frequencies. We have derived the dispersion relation for graphene-dielectric layered structure for both s- and p-polarizations in the subwavelength limit, and discussed the controllable properties of the effective permittivity of the graphene-based HMMs. It is found that the parallel components of effective permittivity is negative near the communication wavelength and it can be tuned by changing the Fermi energy applied on the graphene sheets, the thickness of dielectric, and the layer number of graphene sheets in HMMs. We also reveal that this HMM can support p-polarized surface Bloch wave, and the frequencies and frequency range of surface wave existence can be engineered by varying the Fermi energy of graphene and the fill factor of dielectric or graphene sheets in the unit cell of HMMs.

Acknowledgments

This work is partially supported by the Minister of Education (MOE) Singapore under the grant no. 35/12, the National 973 Program of China (Grant No. 2012CB315701), the National Natural Science Foundation of China (Grant Nos. 61025024 and 11004053), the Natural Science Foundation of Hunan Province of China (Grant No. 12JJ7005), and the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20120161120013).

References and links

1.

B. E. Sernelius, Surface Modes in Physics (John Wiley, 2001).

2.

J. A. Polo Jr and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photonics Rev. 5(2), 234–246 (2011). [CrossRef]

3.

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

4.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005). [CrossRef]

5.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

6.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007). [CrossRef]

7.

P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977). [CrossRef]

8.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface-waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978). [CrossRef]

9.

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96(15), 151101 (2010). [CrossRef]

10.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007). [CrossRef]

11.

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch Surface Waves based sensors,” Opt. Express 18(8), 8087–8093 (2010). [CrossRef] [PubMed]

12.

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett. 91(25), 253125 (2007). [CrossRef]

13.

Y. H. Wan, Z. Zheng, W. J. Kong, X. Zhao, Y. Liu, Y. S. Bian, and J. S. Liu, “Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave,” Opt. Express 20(8), 8998–9003 (2012). [CrossRef] [PubMed]

14.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013). [CrossRef]

15.

S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric supperlattices,” Appl. Phys. Lett. 95(4), 041902 (2009). [CrossRef]

16.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003). [CrossRef] [PubMed]

17.

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010). [CrossRef]

18.

T. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, and M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012). [CrossRef]

19.

M. A. Noginov, A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009). [CrossRef]

20.

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010). [CrossRef] [PubMed]

21.

C. Rizza, A. Ciattoni, E. Spinozzi, and L. Columbo, “Terahertz active spatial filtering through optically tunable hyperbolic metamaterials,” Opt. Lett. 37(16), 3345–3347 (2012). [CrossRef] [PubMed]

22.

G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi 4, 295–297 (2010).

23.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007). [CrossRef] [PubMed]

24.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008). [CrossRef] [PubMed]

25.

Z. Jacob, I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012). [CrossRef]

26.

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006). [CrossRef] [PubMed]

27.

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). [CrossRef] [PubMed]

28.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009). [CrossRef] [PubMed]

29.

Y. He, S. He, and X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett. 37(14), 2907–2909 (2012). [CrossRef] [PubMed]

30.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012). [CrossRef] [PubMed]

31.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009). [CrossRef]

32.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012). [CrossRef]

33.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011). [CrossRef] [PubMed]

34.

I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013). [CrossRef]

35.

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013). [CrossRef] [PubMed]

36.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013). [CrossRef]

37.

I. S. Nefedov, C. A. Valaginnopoulos, and L. A. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15(11), 114003 (2013). [CrossRef]

38.

T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express 21(18), 20888–20899 (2013). [CrossRef] [PubMed]

39.

B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013). [CrossRef] [PubMed]

40.

C. J. Zapata-Rodríguez, J. J. Miret, S. Vuković, and M. R. Belić, “Engineered surface waves in hyperbolic metamaterials,” Opt. Express 21(16), 19113–19127 (2013). [CrossRef] [PubMed]

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: November 26, 2013
Revised Manuscript: January 15, 2014
Manuscript Accepted: January 17, 2014
Published: February 3, 2014

Citation
Yuanjiang Xiang, Jun Guo, Xiaoyu Dai, Shuangchun Wen, and Dingyuan Tang, "Engineered surface Bloch waves in graphene-based hyperbolic metamaterials," Opt. Express 22, 3054-3062 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3054


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. E. Sernelius, Surface Modes in Physics (John Wiley, 2001).
  2. J. A. Polo, A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photonics Rev. 5(2), 234–246 (2011). [CrossRef]
  3. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  4. A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005). [CrossRef]
  5. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  6. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007). [CrossRef]
  7. P. Yeh, A. Yariv, C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977). [CrossRef]
  8. P. Yeh, A. Yariv, A. Y. Cho, “Optical surface-waves in periodic layered media,” Appl. Phys. Lett. 32(2), 104–105 (1978). [CrossRef]
  9. T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, H. P. Herzig, “Two dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96(15), 151101 (2010). [CrossRef]
  10. E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007). [CrossRef]
  11. F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, F. Michelotti, “Experimental determination of the sensitivity of Bloch Surface Waves based sensors,” Opt. Express 18(8), 8087–8093 (2010). [CrossRef] [PubMed]
  12. M. Liscidini, J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett. 91(25), 253125 (2007). [CrossRef]
  13. Y. H. Wan, Z. Zheng, W. J. Kong, X. Zhao, Y. Liu, Y. S. Bian, J. S. Liu, “Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave,” Opt. Express 20(8), 8998–9003 (2012). [CrossRef] [PubMed]
  14. S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117(13), 6821–6825 (2013). [CrossRef]
  15. S. M. Vukovic, I. V. Shadrivov, Y. S. Kivshar, “Surface Bloch waves in metamaterial and metal-dielectric supperlattices,” Appl. Phys. Lett. 95(4), 041902 (2009). [CrossRef]
  16. D. R. Smith, D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003). [CrossRef] [PubMed]
  17. Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010). [CrossRef]
  18. T. U. Tumkur, L. Gu, J. K. Kitur, E. E. Narimanov, M. A. Noginov, “Control of absorption with hyperbolic metamaterials,” Appl. Phys. Lett. 100(16), 161103 (2012). [CrossRef]
  19. M. A. Noginov, A. Barnakov, G. Zhu, T. Tumkur, H. Li, E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009). [CrossRef]
  20. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010). [CrossRef] [PubMed]
  21. C. Rizza, A. Ciattoni, E. Spinozzi, L. Columbo, “Terahertz active spatial filtering through optically tunable hyperbolic metamaterials,” Opt. Lett. 37(16), 3345–3347 (2012). [CrossRef] [PubMed]
  22. G. Naik, A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi 4, 295–297 (2010).
  23. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007). [CrossRef] [PubMed]
  24. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008). [CrossRef] [PubMed]
  25. Z. Jacob, I. Smolyaninov, E. E. Narimanov, “Broadband purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012). [CrossRef]
  26. Z. Jacob, L. V. Alekseyev, E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  27. Z. W. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). [CrossRef] [PubMed]
  28. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009). [CrossRef] [PubMed]
  29. Y. He, S. He, X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett. 37(14), 2907–2909 (2012). [CrossRef] [PubMed]
  30. S. A. Biehs, M. Tschikin, P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012). [CrossRef] [PubMed]
  31. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009). [CrossRef]
  32. A. N. Grigorenko, M. Polini, K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012). [CrossRef]
  33. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011). [CrossRef] [PubMed]
  34. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013). [CrossRef]
  35. M. A. K. Othman, C. Guclu, F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013). [CrossRef] [PubMed]
  36. K. V. Sreekanth, A. De Luca, G. Strangi, “Negative refraction in graphene-based metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013). [CrossRef]
  37. I. S. Nefedov, C. A. Valaginnopoulos, L. A. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15(11), 114003 (2013). [CrossRef]
  38. T. Zhang, L. Chen, X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express 21(18), 20888–20899 (2013). [CrossRef] [PubMed]
  39. B. Zhu, G. Ren, S. Zheng, Z. Lin, S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013). [CrossRef] [PubMed]
  40. C. J. Zapata-Rodríguez, J. J. Miret, S. Vuković, M. R. Belić, “Engineered surface waves in hyperbolic metamaterials,” Opt. Express 21(16), 19113–19127 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited