OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3180–3185
« Show journal navigation

Propagation of a topologically half-charge vortex light beam in a self-focusing photorefractive medium

Chih-Rong Chen, Chih-Hung Yeh, and Ming-Feng Shih  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3180-3185 (2014)
http://dx.doi.org/10.1364/OE.22.003180


View Full Text Article

Acrobat PDF (1718 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

While a fundamental Gaussian light beam can form stably a spatial soliton in certain self-focusing medium, a single-wave topologically integer-n-charge vortex light beam cannot. It breaks up into 2n filaments due to symmetry breaking and azimuthal instability, in which every azimuthal section of a π phase range from a soliton and repels itself from its azimuthal neighboring soliton. Then what happens to the half-charge vortex light beam, which contains only one section of a π phase range? We investigate experimentally and theoretically the propagation and stability of a topologically half-charge vortex light beam in a self-focusing photorefractive medium. We observed that the light beam propagates unstably in a self-focusing medium and breaks up into three filaments. This result is confirmed by numerical simulation and perturbation analysis.

© 2014 Optical Society of America

1. Introduction

Recently, light beams carrying fractional-charge vortices [18

18. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A: Pure Appl. Opt. 6(2), 259–268 (2004). [CrossRef]

20

20. I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wave-front dislocations and their properties,” Opt. Commun. 119(5-6), 604–612 (1995). [CrossRef]

] in linear medium have invoked research attention by their unique phase discontinuities and geometric-phase properties. These characteristics make their propagation behavior more intriguing than that of the integral ones in both linear [21

21. J. B. Götte, S. Franke-Arnold, R. Zambrini, and S. M. Barnett, “Quantum formulation of fractional orbital angular momentum,” J. Mod. Opt. 54(12), 1723–1738 (2007). [CrossRef]

] and nonlinear [22

22. M. A. Molchan, E. V. Doktorov, and R. A. Vlasov, “Propagation of fractional charge Laguerre-Gaussian light beams in moving defocusing media with thermal nonlinearity,” J. Opt. A: Pure Appl. Opt. 11(1), 015706 (2009). [CrossRef]

] media. An single-wave integral-n-charge vortex light beam will break up into 2n filaments in a self-focusing medium, since every azimuthal section of a π phase range forms a soliton and repels itself from its azimuthally neighboring soliton [15

15. W. J. Firth and D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79(13), 2450–2453 (1997). [CrossRef]

]. By this, a single-charge vortex light beam which has a full azimuthal 2π phase will break up into two solitons, which are π phase different from each other. Similarly, a double-charge vortex light beam which has a full azimuthal 4π phase breaks into four. By intuitive induction, one would therefore expect that a half-charge vortex beam, though could not keep its shape, would still keep in one piece because it has only one azimuthal phase range of π. In this investigation, we want to know if it is really the case and thus study experimentally the propagation of a topologically half-charge vortex light beam in a self-focusing photorefractive medium. We observe that the half-charge light beam do not follow the trivial induction but, to our surprise, breaks up into three filaments. We also confirm this result by numerical simulation and perturbation analysis.

2. Experiment

The setup is shown in Fig. 1
Fig. 1 Experimental setup
. A collimated laser beam (of wavelength 532 nm) is focused onto a computer-generated hologram to generate a half-charge vortex light beam [20

20. I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wave-front dislocations and their properties,” Opt. Commun. 119(5-6), 604–612 (1995). [CrossRef]

]. We then use a 4-f image method with lenses of focal lengths of 30 cm and 10 cm, respectively, to relay the vortex beam onto the input face of the SBN60 crystal (a × b × c = 5 × 10 × 5 mm3), of which the electro-optic coefficient r33is about 250 pm/V. An iris is placed at the Fourier plane of the first lens to filter out the unwanted residues. The extraordinarily polarized vortex light beam with a size about 64 μm (FWHM) on the crystal entrance face is of power 15.3 μW. The light beam propagates along the b-axis. An ordinarily polarized light covers the entire crystal as the background illumination. The intensity ratio between the peak of the vortex light beam and the background is about 1.2 [11

11. Z. G. Chen, M. F. Shih, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Steady-state vortex-screening solitons formed in biased photorefractive media,” Opt. Lett. 22(23), 1751–1753 (1997). [CrossRef] [PubMed]

,23

23. M. Segev, M. F. Shih, and G. C. Valley, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13(4), 706–718 (1996). [CrossRef]

]. The defect line due to the phase discontinuity on the vortex light beam is parallel to the c-axis. A lens is used to capture the images at the input or output face of the crystal onto the CCD camera and a polarizer filters out the background light.

3. Numerical simulations and perturbation analysis

To understand the mechanism, we adapt the numerical simulations and perturbation analysis. The half charge vortex light beam is composed by a power series as Eq. (1) [18

18. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A: Pure Appl. Opt. 6(2), 259–268 (2004). [CrossRef]

], where α ( = 1/2) is the fractional topological charge. A0 is set at 1.2, according to our experimental setting, and Pn(ρ)=π8(i)|n|2ρexp(14iρ2)×[J12(|n|1)(14ρ2)iJ12(|n|1)(14ρ2)] containing Bessel functions with order of half integer. We take n of the summation in Eq. (1) up to ± 80. Then beam propagation method (BPM) is used to solve the wave equation [Eq. (2)] with the photorefractive self-focusing medium [24

24. B. Crosignani, P. DiPorto, A. Degasperis, M. Segev, and S. Trillo, “Three-dimensional optical beam propagation and solitons in photorefractive crystals,” J. Opt. Soc. Am. B 14(11), 3078–3090 (1997). [CrossRef]

].
uα(r)=A0exp(r2w02)exp{i(z+πα)}sin(πα)πexp(inϕ)Pn(ρ)αn
(1)
(iζ+2)u=11+|u|2(1+12ln(1+|u|2))u+u2π11+|u|2dρdθρcos(2θ)ln(1+|u(ξ+ρcos(θ),η+ρsin(θ))|2)
(2)
where =(/ξ,/η) is the transverse gradient, uis the light field, and ξ, η, and ζ represent the dimensionless x, y, and z axes respectively. In the simulation, there are 256 × 256 grid points in ξη plane to represent the 400μm×400μmxy plane and 400 points in z direction for 10 mm of propagation. The simulation results are shown in Figs. 3(a)
Fig. 3 Computer simulation results: (a)(e) are intensity and interference images at the input face; (b)(f) are intensity and interference images at the output face without nonlinearity, (c)(g) are intensity and interference images at the output face with nonlinearity 3.0 × 10−4. (d) is 3D plot of (c) and (h) shows the phase structure.
3(h). Notice that though we do observe, in the experiment, transient behavior of the light beam before it comes to steady state, this is not the main concern of this research. As we know the dynamics of the half-charge vortex light beam along the propagation direction depends only on its initial conditions, i.e. its phase and amplitude distribution, as well as the types of the nonlinearity, thus the approach and analysis obtained here can be expanded to other types of nonlinearity. We therefore stick this research to the dynamics along the propagation direction rather than stray from the focus to the temporal dynamics.

The input is shown in Fig. 3(a) and due to phase discontinuity, it has a defect line with zero intensity. Though in the simulation, we can calculate the phase directly, in order to compare with the experiment results, we also show the interfere result with a collinear Gaussian beam. After 10 mm propagation, in Fig. 3(b) the light beam diffracts naturally and reserves its phase property mostly. When a nonlinearity of 3.0 × 10−4 (corresponding to the applied voltage of 1.5 kV) is applied, the light beam breaks up into three filaments shown in 2D [Fig. 3(c)] and 3D plots [Fig. 3(d)]. We mark the position of the three peaks at the interference pattern [Fig. 3(g)] and in the phase plot [Fig. 3(h)]. The results are very close to the experimental results.

We use the perturbation analysis for further investigation [15

15. W. J. Firth and D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79(13), 2450–2453 (1997). [CrossRef]

]. We replace u by u(1+0.03cos(L×θ)) as a perturbed vortex beam with θ starting at 45 degree above the defect line and let the light beam propagate according to Eq. (2) with a nonlinearity of 5.8 × 10−4. L is the azimuthal periodicity ranging from 1 to 5 and 0.03 is the amplitude of the initial perturbation. The field differences between the original vortex beam and the perturbed vortex beam normalized to the amplitude of the initial perturbation are obtained for different propagation distances [Fig. 4
Fig. 4 Normalized amplitudes of different azimuthal modes in the self-focusing photorefractive medium; Inset: field difference between perturbed vortex beam and unperturbed original beam.
], with the example of L=3 at 100 μm of propagation being displayed in the inset. The azimuthal mode of L=3 obtains the highest growth among all modes, meaning the azimuthal mode with L=3 should dominate and this is just what we observe in the experiment and in the numerical simulation. Notice that, the azimuthal distribution of the perturbed light field is somewhat different from those of the light beam observed at the output face of the crystal for both experiment and simulation. This is due to the nonlinear interaction of the light beam at further propagation after the initial stage (100 μm). Because the growth of all azimuthal modes are positive, vortex light beam cannot propagate stablely in saturable self-focusing medium. Notice that although the light beam here lacks the circular symmetry that is possessed by integral-charged vortex light beam, the perturbational analysis still works consistently with the experiment and simulation. Moreover, if we change the beam size and adjust the nonlinearity accordingly to Ref. 23

23. M. Segev, M. F. Shih, and G. C. Valley, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13(4), 706–718 (1996). [CrossRef]

. then we observe the same result, in which the mode L=3 always dominates.

4. Filament interactions

This result shows that azimuthal instability causes the half-charge vortex light beam to break up into three filaments. Though the half-charge vortex light beam only has a section of phase ranging from 0 to π, the positions of phase 0 and π are on the opposite sides of the defect line and by nonlinear interaction, they repel each other and form two separate filaments. On the opposite side of the defect line where the phase is π/2 from the defect line, since it is far from those two filaments, stay where it is and form the third filament [see Fig. 5(g)]. After the three filaments are formed, they then interact according to their relative phases and relative distances. It is this particular phase structure that causes the behavior of fractional topologic charge vortex light beams to be much different from integral-charge vortex light beam. Without such phase structure, such phenomenon should not appear. Therefore to prove this idea, we numerically generate an intensity profile exactly the same as that of the half charge vortex light beam but with only plane phase and put that light beam into PR medium in the simulation. The light beam with plane phase blows up much faster, meaning the phase structure plays a very important role. We also suspect with other values of the fractional charge, the vortex light beam should also behave differently.

5. Conclusion

In conclusion, azimuthal instability is a well-known phenomenon in nonlinear optics. It is the main reason that integer-charge vortex light beam cannot stably propagate in a self-focusing PR medium. We reveal the instability of the propagation of the topologically half-charge vortex light beam in a biased self-focusing photorefractive medium and confirm that by numerical simulation. With the help of the perturbation analysis, it shows that half-charge vortex light beam is unstable in photorefractive medium due the positive growth gain of different azimuthal modes and the gain to form three filaments is the largest. After the initial splitting, then individual filaments interact. These observed wave phenomena are very general and can exist in other similar nonlinear system, such as light wave in saturable atomic gases or in liquid crystal, or even matter wave in a Bose-Einstein condensate. Since partially spatial coherent light beam can stabilize integral-charge vortex light beam in a self-focusing medium [16

16. C. C. Jeng, M. F. Shih, K. Motzek, and Y. Kivshar, “Partially incoherent optical vortices in self-focusing nonlinear media,” Phys. Rev. Lett. 92(4), 043904 (2004). [CrossRef] [PubMed]

], in the future we can further study whether the spatial incoherence can improve the stability of a fractional vortex light beam.

Acknowledgments

This research is supported by National Science Council, Taiwan.

References and links

1.

A. I. Larkin and V. M. Vinokur, “Quantum statistical mechanics of vortices in high-temperature superconductors,” Phys. Rev. B Condens. Matter 50(14), 10272–10286 (1994). [CrossRef] [PubMed]

2.

T. F. Fric and A. Roshko, “Vortical structure in the wake of a transverse jet,” J. Fluid Mech. 279(-1), 1–47 (1994). [CrossRef]

3.

C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J. Davis, and B. P. Anderson, “Spontaneous vortices in the formation of Bose–Einstein condensates,” Nature 455(7215), 948–951 (2008). [CrossRef]

4.

A. Bandyopadhyay and R. P. Singh, “Wigner distribution of elliptical quantum optical vortex,” Opt. Commun. 284(1), 256–261 (2011). [CrossRef]

5.

J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004). [CrossRef]

6.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]

7.

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner,” Opt. Lett. 22(1), 52–54 (1997). [CrossRef] [PubMed]

8.

Z. X. Wang, N. Zhang, and X. C. Yuan, “High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication,” Opt. Express 19(2), 482–492 (2011). [CrossRef] [PubMed]

9.

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13(3), 689–694 (2005). [CrossRef] [PubMed]

10.

G. A. Swartzlander Jr and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69(17), 2503–2506 (1992). [CrossRef] [PubMed]

11.

Z. G. Chen, M. F. Shih, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Steady-state vortex-screening solitons formed in biased photorefractive media,” Opt. Lett. 22(23), 1751–1753 (1997). [CrossRef] [PubMed]

12.

V. Tikhonenko, J. Christou, and B. Lutherdaves, “Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium,” J. Opt. Soc. Am. B 12(11), 2046–2052 (1995). [CrossRef]

13.

J. P. Torres, J. M. Soto-Crespo, L. Torner, and D. V. Petrov, “Solitary-wave vortices in quadratic nonlinear media,” J. Opt. Soc. Am. B 15(2), 625–627 (1998). [CrossRef]

14.

Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Stability of vortex solitons in thermal nonlinear media with cylindrical symmetry,” Opt. Express 15(15), 9378–9384 (2007). [CrossRef] [PubMed]

15.

W. J. Firth and D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79(13), 2450–2453 (1997). [CrossRef]

16.

C. C. Jeng, M. F. Shih, K. Motzek, and Y. Kivshar, “Partially incoherent optical vortices in self-focusing nonlinear media,” Phys. Rev. Lett. 92(4), 043904 (2004). [CrossRef] [PubMed]

17.

S. Y. Chen, T. C. Lo, and M. F. Shih, “Stabilization of optical vortices in noninstantaneous self-focusing medium by small rotating intensity modulation,” Opt. Express 15(21), 13689–13694 (2007). [CrossRef] [PubMed]

18.

M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A: Pure Appl. Opt. 6(2), 259–268 (2004). [CrossRef]

19.

I. V. Basistiy, V. A. Pas ko, V. V. Slyusar, M. S. Soskin, and M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A, Pure Appl. Opt. 6(5), S166–S169 (2004). [CrossRef]

20.

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wave-front dislocations and their properties,” Opt. Commun. 119(5-6), 604–612 (1995). [CrossRef]

21.

J. B. Götte, S. Franke-Arnold, R. Zambrini, and S. M. Barnett, “Quantum formulation of fractional orbital angular momentum,” J. Mod. Opt. 54(12), 1723–1738 (2007). [CrossRef]

22.

M. A. Molchan, E. V. Doktorov, and R. A. Vlasov, “Propagation of fractional charge Laguerre-Gaussian light beams in moving defocusing media with thermal nonlinearity,” J. Opt. A: Pure Appl. Opt. 11(1), 015706 (2009). [CrossRef]

23.

M. Segev, M. F. Shih, and G. C. Valley, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13(4), 706–718 (1996). [CrossRef]

24.

B. Crosignani, P. DiPorto, A. Degasperis, M. Segev, and S. Trillo, “Three-dimensional optical beam propagation and solitons in photorefractive crystals,” J. Opt. Soc. Am. B 14(11), 3078–3090 (1997). [CrossRef]

25.

Notice there is a small difference between the applied nonlinearity strength in the simulation and in the experiment. This is due to the possible imhomogeneity of electro-optic coefficient of the crystal, or not exactly the same light beam sizes in simulation and in experiment.

26.

A. V. Buryak, Y. S. Kivshar, M. F. Shih, and M. Segev, “Induced coherence and stable soliton spiraling,” Phys. Rev. Lett. 82(1), 81–84 (1999). [CrossRef]

27.

M. F. Shih, M. Segev, and G. Salamo, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78(13), 2551–2554 (1997). [CrossRef]

OCIS Codes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5330) Nonlinear optics : Photorefractive optics
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Physical Optics

History
Original Manuscript: December 9, 2013
Revised Manuscript: January 23, 2014
Manuscript Accepted: January 23, 2014
Published: February 4, 2014

Citation
Chih-Rong Chen, Chih-Hung Yeh, and Ming-Feng Shih, "Propagation of a topologically half-charge vortex light beam in a self-focusing photorefractive medium," Opt. Express 22, 3180-3185 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3180


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. I. Larkin, V. M. Vinokur, “Quantum statistical mechanics of vortices in high-temperature superconductors,” Phys. Rev. B Condens. Matter 50(14), 10272–10286 (1994). [CrossRef] [PubMed]
  2. T. F. Fric, A. Roshko, “Vortical structure in the wake of a transverse jet,” J. Fluid Mech. 279(-1), 1–47 (1994). [CrossRef]
  3. C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J. Davis, B. P. Anderson, “Spontaneous vortices in the formation of Bose–Einstein condensates,” Nature 455(7215), 948–951 (2008). [CrossRef]
  4. A. Bandyopadhyay, R. P. Singh, “Wigner distribution of elliptical quantum optical vortex,” Opt. Commun. 284(1), 256–261 (2011). [CrossRef]
  5. J. Leach, E. Yao, M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004). [CrossRef]
  6. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  7. N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner,” Opt. Lett. 22(1), 52–54 (1997). [CrossRef] [PubMed]
  8. Z. X. Wang, N. Zhang, X. C. Yuan, “High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication,” Opt. Express 19(2), 482–492 (2011). [CrossRef] [PubMed]
  9. S. Fürhapter, A. Jesacher, S. Bernet, M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13(3), 689–694 (2005). [CrossRef] [PubMed]
  10. G. A. Swartzlander, C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69(17), 2503–2506 (1992). [CrossRef] [PubMed]
  11. Z. G. Chen, M. F. Shih, M. Segev, D. W. Wilson, R. E. Muller, P. D. Maker, “Steady-state vortex-screening solitons formed in biased photorefractive media,” Opt. Lett. 22(23), 1751–1753 (1997). [CrossRef] [PubMed]
  12. V. Tikhonenko, J. Christou, B. Lutherdaves, “Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium,” J. Opt. Soc. Am. B 12(11), 2046–2052 (1995). [CrossRef]
  13. J. P. Torres, J. M. Soto-Crespo, L. Torner, D. V. Petrov, “Solitary-wave vortices in quadratic nonlinear media,” J. Opt. Soc. Am. B 15(2), 625–627 (1998). [CrossRef]
  14. Y. V. Kartashov, V. A. Vysloukh, L. Torner, “Stability of vortex solitons in thermal nonlinear media with cylindrical symmetry,” Opt. Express 15(15), 9378–9384 (2007). [CrossRef] [PubMed]
  15. W. J. Firth, D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79(13), 2450–2453 (1997). [CrossRef]
  16. C. C. Jeng, M. F. Shih, K. Motzek, Y. Kivshar, “Partially incoherent optical vortices in self-focusing nonlinear media,” Phys. Rev. Lett. 92(4), 043904 (2004). [CrossRef] [PubMed]
  17. S. Y. Chen, T. C. Lo, M. F. Shih, “Stabilization of optical vortices in noninstantaneous self-focusing medium by small rotating intensity modulation,” Opt. Express 15(21), 13689–13694 (2007). [CrossRef] [PubMed]
  18. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A: Pure Appl. Opt. 6(2), 259–268 (2004). [CrossRef]
  19. I. V. Basistiy, V. A. Pas ko, V. V. Slyusar, M. S. Soskin, M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A, Pure Appl. Opt. 6(5), S166–S169 (2004). [CrossRef]
  20. I. V. Basistiy, M. S. Soskin, M. V. Vasnetsov, “Optical wave-front dislocations and their properties,” Opt. Commun. 119(5-6), 604–612 (1995). [CrossRef]
  21. J. B. Götte, S. Franke-Arnold, R. Zambrini, S. M. Barnett, “Quantum formulation of fractional orbital angular momentum,” J. Mod. Opt. 54(12), 1723–1738 (2007). [CrossRef]
  22. M. A. Molchan, E. V. Doktorov, R. A. Vlasov, “Propagation of fractional charge Laguerre-Gaussian light beams in moving defocusing media with thermal nonlinearity,” J. Opt. A: Pure Appl. Opt. 11(1), 015706 (2009). [CrossRef]
  23. M. Segev, M. F. Shih, G. C. Valley, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13(4), 706–718 (1996). [CrossRef]
  24. B. Crosignani, P. DiPorto, A. Degasperis, M. Segev, S. Trillo, “Three-dimensional optical beam propagation and solitons in photorefractive crystals,” J. Opt. Soc. Am. B 14(11), 3078–3090 (1997). [CrossRef]
  25. Notice there is a small difference between the applied nonlinearity strength in the simulation and in the experiment. This is due to the possible imhomogeneity of electro-optic coefficient of the crystal, or not exactly the same light beam sizes in simulation and in experiment.
  26. A. V. Buryak, Y. S. Kivshar, M. F. Shih, M. Segev, “Induced coherence and stable soliton spiraling,” Phys. Rev. Lett. 82(1), 81–84 (1999). [CrossRef]
  27. M. F. Shih, M. Segev, G. Salamo, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78(13), 2551–2554 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited