OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 3219–3227
« Show journal navigation

Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator

Qingzhong Huang, Zhan Shu, Ge Song, Juguang Chen, Jinsong Xia, and Jinzhong Yu  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 3219-3227 (2014)
http://dx.doi.org/10.1364/OE.22.003219


View Full Text Article

Acrobat PDF (6412 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We observe theoretically and experimentally electromagnetically induced transparency (EIT)-like effect in a single microdisk resonator (MDR) evanescently coupled with two bus waveguides. This structure is modeled using transfer matrix method, and it is revealed that the EIT-like spectrum originates from the coherent interference between two nearby low-order whispering-gallery modes (WGMs) with comparable quality factors. The EIT-like properties have been investigated analytically with respect to coupling efficiency, round-trip power attenuation, as well as phase spacing between two resonances. The resonance spacing and mode coupling are adjustable by varying the effective indices of WGMs and waveguide mode. Consequently, fully integrated MDRs were fabricated in silicon. Resonant modes and coupling efficiency are studied in one-bus waveguide coupled MDRs. Finally, EIT-like resonance is observed in a two-bus waveguides coupled MDR of 3 μm in radius with a quality factor of 4,200 and central transmission larger than 0.65. The experimental results agree with our modeling well and show good internal consistency, confirming that two WGMs coupled in a point-to-point manner are required for EIT-like effect.

© 2014 Optical Society of America

1. Introduction

Electromagnetically induced transparency (EIT) has attracted considerable attentions in the past decades, due to its wide applications in slowing/stopping light, nonlinear optics, and quantum information processing [1

1. I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6(3), 333–353 (2012). [CrossRef]

3

3. R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16–18), 2441–2448 (2004). [CrossRef]

]. Similar to EIT effect caused by quantum interference in multi-level atomic systems, EIT-like spectrum, having a narrow transparency peak residing in a broader absorption valley, also can be generated by coherent interference between coupled resonant modes [4

4. R. W. Boyd and D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441(7094), 701–702 (2006). [CrossRef] [PubMed]

]. All-optical analogies to EIT have been demonstrated in various configurations comprising coupled two resonators, including microsphere [5

5. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007). [CrossRef] [PubMed]

,6

6. M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009). [CrossRef]

], microtoroid [7

7. C. Zheng, X. Jiang, S. Hua, L. Chang, G. Li, H. Fan, and M. Xiao, “Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities,” Opt. Express 20(16), 18319–18325 (2012). [CrossRef] [PubMed]

], microring [8

8. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006). [CrossRef] [PubMed]

15

15. X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, and D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013). [CrossRef]

], self-coupled optical waveguide resonator [16

16. Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, and J. Chen, “Tunable two-stage self-coupled optical waveguide resonators,” Opt. Lett. 38(8), 1215–1217 (2013). [CrossRef] [PubMed]

,17

17. L. Zhou, T. Ye, and J. Chen, “Coherent interference induced transparency in self-coupled optical waveguide-based resonators,” Opt. Lett. 36(1), 13–15 (2011). [CrossRef] [PubMed]

], and photonic crystal microcavity [18

18. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009). [CrossRef] [PubMed]

,19

19. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16(1), 288–294 (2010). [CrossRef]

].

In this paper, we have demonstrated EIT-like effect in a microdisk resonator (MDR) coupled with two bus waveguides. A theoretical model is given using transfer matrix method [23

23. Q. Huang, X. Zhang, J. Xia, and J. Yu, “Dual-band optical filter based on a single microdisk resonator,” Opt. Lett. 36(23), 4494–4496 (2011). [CrossRef] [PubMed]

], and then applied to study the mechanism and analyze the influencing factors of this device. It is found that the EIT-like resonance in a planar MDR stems from the coherent interference between two low-order WGMs with comparable quality factors [23

23. Q. Huang, X. Zhang, J. Xia, and J. Yu, “Dual-band optical filter based on a single microdisk resonator,” Opt. Lett. 36(23), 4494–4496 (2011). [CrossRef] [PubMed]

25

25. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009). [CrossRef] [PubMed]

]. Unlike microsphere/microtoroid, it is not easy for an on-chip MDR to achieve two WGM resonances of tremendously different quality factor. Using nanofabrication processing, we realized silicon based 3-μm radius MDRs with one bus and two buses coupled. One-bus waveguide coupled MDRs are characterized to study the properties of resonant modes and coupling efficiency. Finally, EIT-like resonance is observed in a two-bus waveguides coupled MDR with a quality factor of 4,200 and central transmission larger than 0.65. The experimental results fit our modeling well and show good internal consistency.

2. Model and mechanism

Figure 1(a)
Fig. 1 (a) Schematic of a two-mode MDR coupled with two bus waveguides. (b) A SEM image of the fabricated device.
shows the schematic structure of a two-bus waveguides coupled MDR, or a one-bus waveguide coupled MDR as one bus is removed. It is supposed that the first-order radial WGM (WGM1) and second-order radial WGM (WGM2) are excited simultaneously and indirectly coupled through the 3 × 3 couplers.

Using transfer matrix method, the input-output relations for a 3 × 3 coupler can be expressed by
[b0b1b2]=[t0jk1jk2jk1t1kcjk2kct2][a0a1a2]
(1)
where a0,1,2 and b0,1,2 are the optical fields (the subscripts 0, 1, and 2 represent the waveguide mode, WGM1, and WGM2, respectively) at the input and output ports; -jk1,2 and -kc are the field coupling coefficients between these modes; t0,1,2 is the field transmission coefficient.

We use θ = 2π2R (neff1 + neff2)/λ to describe the phase shift of two-bus waveguides coupled MDR, where R, neff1,2 and λ denote the MDR radius, effective mode index of WGM1,2, and vacuum wavelength, respectively. The optical fields of WGMs are phase shifted and cross-coupled in the resonator, and the relations are described as for (2m-0.5) π<θ< (2m + 0.5) π, where m is an integer,
{a1=b1α1ejφ1t1+b2(α1α2ejφ1ejφ2)1/2(kc)a2=b2α2ejφ2t2+b1(α1α2ejφ1ejφ2)1/2(kc)
(2)
for (2m-1) π<θ≤ (2m-0.5) π or (2m + 0.5) π≤θ< (2m + 1) π,
{a1=b1α1ejφ1t1b2(α1α2ejφ1ejφ2)1/2(kc)a2=b2α2ejφ2t2b1(α1α2ejφ1ejφ2)1/2(kc)
(3)
where α1,2 and φ1,2 are the round-trip field attenuation and phase shift for WGM1,2, respectively, satisfying φ1,2 = (4π2Rneff1,2)/λ.

For the one-bus waveguide coupled MDR, Eqs. (2) and (3) can be simplified as

a1=b1α1ejφ1,a2=b2α2ejφ2
(4)

In both cases, the field transmission in the through channel is given by

St=b0a0=t0jk1a1a0jk2a2a0
(5)

We use C01 and C02 to denote the fields coupled out from WGM1 and WGM2, corresponding to the second and third terms on the right-hand side of Eq. (5), respectively.

3. Analysis of the EIT-like transmission

In this section, we provide a parametric analysis of the EIT-like transmission in two-bus waveguides coupled MDR with respect to coupling efficiency (k12 and k22), round-trip power attenuation (α12 and α22), and phase spacing between two WGM resonances (Δψ). Figures 3(a)
Fig. 3 (a) (d) (g) Contour plots of power transmission as functions of phase detuning and coupling efficiency with Δψ/π = 0, 0.03, 0.08, respectively, (b) (e) (h) power transmissions and (c) (f) (i) phase transmissions as a function of phase detuning corresponding to the five dashed lines in the left panel.
, 3(d) and 3(g) show the contour plots of power transmission (|St|2) as functions of phase detuning (Δθ/π) and coupling efficiency (k12 = k22) with a phase spacing Δψ/π = 0, 0.03, and 0.08, respectively, assuming α12 = 0.99 and α22 = 0.98. For clear observation, power transmissions with k12 = k22 = 0.05, 0.10, 0.15, 0.20, and 0.25 are illustrated in Figs. 3(b), 3(e) and 3(h) corresponding to the five dashed lines depicted in Figs. 3(a), 3(d) and 3(g), respectively. It is seen that the two WGM resonances combine and form a single valley as they are fully overlapped, i.e. Δψ/π = 0. When the two resonances are detuned by Δψ/π = 0.03, and 0.08, EIT-like phenomenon emerges, as shown in Figs. 3(e)-3(h). As the coupling efficiency increases, the central transmission of transparency window decreases evidently, while the central bandwidth (ΔθFWHM) becomes smaller slightly, indicating a higher quality factor. That is to say, the quality factor increases with the coupling efficiency at the cost of central transmission for the EIT-like resonance in this structure. It is noteworthy that the inbuilt EIT-like resonance evolves into two separated WGM resonances when either the coupling efficiency is too weak or the phase spacing is too large, as observed in Figs. 3(e) and 3(h). Moreover, the phase transmissions are simulated and presented in Figs. 3(c), 3(f) and 3(i), corresponding to the power transmissions in Figs. 3(b), 3(e) and 3(h), respectively. As seen, the phase response of an EIT-like resonance in the MDR is similar to that of a traditional EIT-like resonance. It is interesting that, as the two WGMs are fully overlapped, the phase response for k12 = k22 = 0.25 is quite different from that for weaker coupling efficiency, because of the increased coupling between two WGMs (kc2>0.02). If the two resonances are seriously different in linewidth, our structure possibly can provide an EIT-like resonance with other types of phase response, as predicted previously in the coupled microring resonators [15

15. X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, and D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013). [CrossRef]

].

Figure 4(a)
Fig. 4 Power transmissions as a function of phase detuning under various coupling efficiencies (a) and round-trip power attenuations (b) of WGMs, insets: detailed spectra of EIT-like resonance.
illustrates the influence of difference in k12 and k22 on the EIT-like transmission with a variety of k22, assuming a fixed k12 of 0.10 and Δψ/π = 0.03. We find that the right dip for WGM2 is broadened more rapidly as both dips become wider simultaneously, and the EIT-like resonance is shifted leftward as k22 increases. As seen, the line shape of EIT-like resonance achieves almost symmetrical when k12 = k22. The influence of α12 and α22 in the MDR is also examined under k12 = k22 = 0.10, and Δψ/π = 0.03, as shown in Fig. 4(b). It is observed that the central transmission increases distinctly and the central peak becomes sharper as α12 and α22 increase, representing a higher quality factor, while the bandwidths of resonant dips are almost unchanged. That is because the optical transparency and intrinsic quality factors of WGMs grow higher as the light propagates in a lower-loss MDR.

We use central bandwidth and transmission to describe the performance of EIT-like effect. Figure 5
Fig. 5 The central bandwidth and transmission of EIT-like resonance under k12 = k22 = 0.08 (solid lines) and 0.15 (dot dash lines), and the resonant bandwidth of WGM1 under k12 = 0.08 (red solid line) and 0.15 (red dot dash line), assuming α12 = 0.99 and α22 = 0.98.
presents the central bandwidth and transmission as a function of phase spacing under two sets of coupling efficiency: k12 = k22 = 0.08 (solid lines) and k12 = k22 = 0.15 (dot dash lines). The bandwidths of an individual WGM1 resonance with k12 = 0.08 (red solid line) and 0.15 (red dot dash line) are also calculated and shown in Fig. 5. It is seen that the bandwidth and transmission of EIT-like resonance both increase and start from zero with the increasing of phase spacing, and higher coupling efficiency brings a larger central bandwidth, as well as lower central transmission. In the calculation domain, the EIT-like resonance exhibits a smaller bandwidth than individual WGM1 for coupling efficiency of 0.15, while it begins to have a larger bandwidth when Δψ/π>0.13 for coupling efficiency of 0.08. Exactly, in the case of Δψ/π>0.13 and k12 = k22 = 0.08, the EIT-like resonance no longer exists and it evolves into two separated WGM resonances.

4. Resonance spacing and mode coupling

As analyzed previously, EIT-like phenomenon is sensitive to the resonance spacing between two WGMs and the coupling efficiency between WGM and waveguide mode. Here, we use resonance spacing in wavelength instead of phase spacing, while they are intrinsically the same. The resonance position and spacing are mostly determined by the effective index of WGM, and slightly influenced by the coupling induced phase shift. The simulation of WGM effective index is performed for silicon-on-insulator (SOI) based MDRs with a 340-nm-thick top silicon layer, 3-μm MDR radius, and refractive indices of Si and SiO2 referred from [26

26. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011). [CrossRef] [PubMed]

]. The effective indices of transverse magnetic (TM) polarized WGM1 and WGM2 for slab thicknesses of 40 nm and 80 nm are calculated respectively using finite mode matching method, as shown in Fig. 6
Fig. 6 Effective indices of WGM1 (red lines) and WGM2 (blue lines) as a function of wavelength, insets: effective index of TM0 mode (black lines) in the waveguide as a function of width at the wavelength of 1550 nm, and the Ey field profiles of WGM1, WGM2, and TM0 mode. The solid and dashed lines are for slab thicknesses of 40 nm and 80 nm, respectively.
. It is seen that the mode effective index decreases with the wavelength, while it increases with the slab height. According to the relation 2πRneff = mλ0, where m is the azimuthal order of WGM, the resonant wavelengths (λ0) are obtained for WGM1 and WGM2, as denoted by the black dots in Fig. 6. Obviously, the resonance spacing between WGM1 and WGM2 varies with the slab height and wavelength. It is expected that the resonance spacing is also affected by the thickness of top silicon layer and MDR radius, and even can be tuned by local heating [21

21. Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009). [CrossRef]

] or carrier injection [27

27. G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fédéli, F. Milesi, P. Grosse, D. Bouville, E. Cassan, and L. Vivien, “High extinction ratio 10 Gbit/s silicon optical modulator,” Opt. Express 19(7), 5827–5832 (2011). [CrossRef] [PubMed]

] in the MDR. With respect to the coupling, mode matching is very essential for enhancing the coupling between two modes. Hence, with the aim of higher k12 and k22, the effective index of waveguide mode should fall in between the effective indices of WGM1 and WGM2. The inset of Fig. 6 shows that the effective index of TM0 mode in the waveguide increases monotonously with the waveguide width, indicating that optimal waveguide width is achievable to approach mode matching between WGM and waveguide mode. The gap between MDR and waveguide, as another important factor, also has an impact on the coupling efficiency between WGM and waveguide mode, and the coupling efficiency becomes lower as the gap enlarged.

5. Experiment and discussion

MDRs with one bus and two buses coupled were fabricated on a SOI wafer with a 340-nm-thick top silicon layer and a 2-μm-thick buried oxide layer. The fine pattern was defined by electron beam lithography, followed by inductively coupled plasma etching with a depth of 300 nm. The radius of MDR is 3 μm, and the waveguide width is 290 nm. On the basis of measured structure dimensions, the effective indices of TM-polarized WGM1, WGM2 and TM0 mode in waveguide are evaluated to be about 2.35, 2.00, and 2.18 at 1550-nm wavelength, respectively, indicating comparable k12 and k22 due to mode matching.

For speculating the power attenuation and coupling efficiency, transmissions of one-bus waveguide coupled MDRs are measured and analyzed for different gaps. Figure 7(a)
Fig. 7 (a) The measured power transmission for a gap of 180 nm, inset: experimental results (blue circles) and theoretical fitting (red line), and a SEM image. (b) The measured power transmission for a gap of 270 nm, inset: experimental results (blue circles) and theoretical fitting (red line).
and 7(b) show the measured power transmissions for gaps of 180 nm and 270 nm, respectively. It is seen that two low-order WGMs are excited by the bus waveguide and exhibit comparable resonance linewidths. The influence of roughness-induced backscattering is neglectable here, since the resonance splitting is hardly observed in the spectra, except the resonance of WGM1 near 1488 nm for the gap of 180 nm. Using the proposed model, the fitting curves are given and agree well with the experimental results, as seen in the insets of Fig. 7(a) and 7(b). The fitting parameters are obtained as follows: for a gap of 180 nm, we have k12 = 0.031, k22 = 0.048, α12 = 0.990 and α22 = 0.981; and for a gap of 270 nm, we have k12 = 0.004, k22 = 0.011, α12 = 0.989 and α22 = 0.981. As the quality factors of two WGMs are on the same order of magnitude, the one-bus waveguide coupled MDRs do not behavior as reported in literatures [20

20. C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009). [CrossRef]

,21

21. Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009). [CrossRef]

].

As shown in Fig. 1(b), a two-bus waveguides coupled MDR with a gap of 180 nm was fabricated and characterized. It is observed that a narrow EIT-like transparency window appears between two broader dips around the wavelength of 1546 nm, with central transmission larger than 0.65, and a central bandwidth of 0.37 nm, corresponding to a quality factor of 4,200. The theoretical fitting in Fig. 8
Fig. 8 The measured power transmission (blue circles) and theoretical fitting (red line) of the fabricated two-bus waveguides coupled MDR.
exhibits good agreement with the experiment, when we set k12 = 0.031, k22 = 0.048, α12 = 0.990, α22 = 0.981, neff1 = 2.37917 and neff2 = 2.04998. It shows a good internal consistency with the result of one-bus waveguide coupled MDR with the same dimensions. Note that a blueshift of the resonant spectrum occurs as compared with the spectrum in the inset of Fig. 7 (a), due to the additional phase shift in the 3 × 3 coupler at the drop channel [28

28. M. Popovic, C. Manolatou, and M. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006). [CrossRef] [PubMed]

]. The experimental results confirm that two-bus waveguides coupled MDR with two WGMs coupled in a point-to-point manner is required for EIT-like effect. Making use of the two modes in a MDR, this structure offers us another way to achieve EIT-like effect on a chip, and it is more compact than conventional coupled double resonators, as the resonator number is decreased by a half.

6. Conclusion

In summary, EIT-like effect has been demonstrated theoretically and experimentally in a fully integrated MDR coupled with two buses. The structure is modeled and EIT-like spectral response is found to originate from the destructive interference between two nearby resonances of low-order WGMs with comparable quality factors. The influencing factors of EIT-like effect have been studied, including coupling efficiency, round-trip power attenuation, and phase spacing. EIT-like resonance is experimentally observed in an ultra-compact and fully integrated MDR of 3 μm in radius on a SOI platform with a quality factor of 4,200 and central transmission larger than 0.65. The experimental result agrees with our modeling well. It is approved that two buses coupled are required for a two-mode MDR to obtain EIT-like effect. Due to the compactness and integratability, the proposed device is promising for applications in on-chip time delay lines and nonlinear signal processing.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants 61006045 and 61177049, by the Major State Research Program of China under Grant 2013CB933303, and by the Major State Basic Research Development Program of China under Grants 2013CB632104 and 2010CB923204.

References and links

1.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6(3), 333–353 (2012). [CrossRef]

2.

X. D. Yang, S. J. Li, C. H. Zhang, and H. Wang, “Enhanced cross-Kerr nonlinearity via electromagnetically induced transparency in a four-level tripod atomic system,” J. Opt. Soc. Am. B 26(7), 1423–1434 (2009). [CrossRef]

3.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16–18), 2441–2448 (2004). [CrossRef]

4.

R. W. Boyd and D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441(7094), 701–702 (2006). [CrossRef] [PubMed]

5.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007). [CrossRef] [PubMed]

6.

M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009). [CrossRef]

7.

C. Zheng, X. Jiang, S. Hua, L. Chang, G. Li, H. Fan, and M. Xiao, “Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities,” Opt. Express 20(16), 18319–18325 (2012). [CrossRef] [PubMed]

8.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006). [CrossRef] [PubMed]

9.

Q. Xu, J. Shakya, and M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006). [CrossRef] [PubMed]

10.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007). [CrossRef]

11.

S. Darmawan, L. Y. M. Tobing, and D. H. Zhang, “Experimental demonstration of coupled-resonator-induced-transparency in silicon-on-insulator based ring-bus-ring geometry,” Opt. Express 19(18), 17813–17819 (2011). [CrossRef] [PubMed]

12.

Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, and D. H. Zhang, “Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer,” J. Opt. Soc. Am. B 28(1), 28–36 (2011). [CrossRef]

13.

L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, “Embedded ring resonators for microphotonic applications,” Opt. Lett. 33(17), 1978–1980 (2008). [CrossRef] [PubMed]

14.

X. Zhou, L. Zhang, A. M. Armani, R. G. Beausoleil, A. E. Willner, and W. Pang, “Power enhancement and phase regimes in embedded microring resonators in analogy with electromagnetically induced transparency,” Opt. Express 21(17), 20179–20186 (2013). [CrossRef] [PubMed]

15.

X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, and D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013). [CrossRef]

16.

Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, and J. Chen, “Tunable two-stage self-coupled optical waveguide resonators,” Opt. Lett. 38(8), 1215–1217 (2013). [CrossRef] [PubMed]

17.

L. Zhou, T. Ye, and J. Chen, “Coherent interference induced transparency in self-coupled optical waveguide-based resonators,” Opt. Lett. 36(1), 13–15 (2011). [CrossRef] [PubMed]

18.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009). [CrossRef] [PubMed]

19.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16(1), 288–294 (2010). [CrossRef]

20.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009). [CrossRef]

21.

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009). [CrossRef]

22.

B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011). [CrossRef]

23.

Q. Huang, X. Zhang, J. Xia, and J. Yu, “Dual-band optical filter based on a single microdisk resonator,” Opt. Lett. 36(23), 4494–4496 (2011). [CrossRef] [PubMed]

24.

Q. Huang, X. Zhang, J. Xia, and J. Yu, “Systematic investigation of silicon digital 1×2 electro-optic switch based on a microdisk resonator through carrier injection,” Appl. Phys. B 105(2), 353–361 (2011). [CrossRef]

25.

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009). [CrossRef] [PubMed]

26.

D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011). [CrossRef] [PubMed]

27.

G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fédéli, F. Milesi, P. Grosse, D. Bouville, E. Cassan, and L. Vivien, “High extinction ratio 10 Gbit/s silicon optical modulator,” Opt. Express 19(7), 5827–5832 (2011). [CrossRef] [PubMed]

28.

M. Popovic, C. Manolatou, and M. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006). [CrossRef] [PubMed]

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(130.3120) Integrated optics : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

History
Original Manuscript: October 30, 2013
Revised Manuscript: January 19, 2014
Manuscript Accepted: January 28, 2014
Published: February 4, 2014

Citation
Qingzhong Huang, Zhan Shu, Ge Song, Juguang Chen, Jinsong Xia, and Jinzhong Yu, "Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator," Opt. Express 22, 3219-3227 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-3219


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Novikova, R. L. Walsworth, Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6(3), 333–353 (2012). [CrossRef]
  2. X. D. Yang, S. J. Li, C. H. Zhang, H. Wang, “Enhanced cross-Kerr nonlinearity via electromagnetically induced transparency in a four-level tripod atomic system,” J. Opt. Soc. Am. B 26(7), 1423–1434 (2009). [CrossRef]
  3. R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16–18), 2441–2448 (2004). [CrossRef]
  4. R. W. Boyd, D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441(7094), 701–702 (2006). [CrossRef] [PubMed]
  5. K. Totsuka, N. Kobayashi, M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007). [CrossRef] [PubMed]
  6. M. Tomita, K. Totsuka, R. Hanamura, T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009). [CrossRef]
  7. C. Zheng, X. Jiang, S. Hua, L. Chang, G. Li, H. Fan, M. Xiao, “Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities,” Opt. Express 20(16), 18319–18325 (2012). [CrossRef] [PubMed]
  8. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96(12), 123901 (2006). [CrossRef] [PubMed]
  9. Q. Xu, J. Shakya, M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006). [CrossRef] [PubMed]
  10. Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007). [CrossRef]
  11. S. Darmawan, L. Y. M. Tobing, D. H. Zhang, “Experimental demonstration of coupled-resonator-induced-transparency in silicon-on-insulator based ring-bus-ring geometry,” Opt. Express 19(18), 17813–17819 (2011). [CrossRef] [PubMed]
  12. Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, D. H. Zhang, “Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer,” J. Opt. Soc. Am. B 28(1), 28–36 (2011). [CrossRef]
  13. L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, A. E. Willner, “Embedded ring resonators for microphotonic applications,” Opt. Lett. 33(17), 1978–1980 (2008). [CrossRef] [PubMed]
  14. X. Zhou, L. Zhang, A. M. Armani, R. G. Beausoleil, A. E. Willner, W. Pang, “Power enhancement and phase regimes in embedded microring resonators in analogy with electromagnetically induced transparency,” Opt. Express 21(17), 20179–20186 (2013). [CrossRef] [PubMed]
  15. X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013). [CrossRef]
  16. Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, J. Chen, “Tunable two-stage self-coupled optical waveguide resonators,” Opt. Lett. 38(8), 1215–1217 (2013). [CrossRef] [PubMed]
  17. L. Zhou, T. Ye, J. Chen, “Coherent interference induced transparency in self-coupled optical waveguide-based resonators,” Opt. Lett. 36(1), 13–15 (2011). [CrossRef] [PubMed]
  18. X. Yang, M. Yu, D. L. Kwong, C. W. Wong, “All-Optical Analog to Electromagnetically Induced Transparency in Multiple Coupled Photonic Crystal Cavities,” Phys. Rev. Lett. 102(17), 173902 (2009). [CrossRef] [PubMed]
  19. X. Yang, M. Yu, D. L. Kwong, C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16(1), 288–294 (2010). [CrossRef]
  20. C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42(21), 215401 (2009). [CrossRef]
  21. Y.-F. Xiao, L. He, J. Zhu, L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009). [CrossRef]
  22. B.-B. Li, Y.-F. Xiao, C.-L. Zou, Y.-C. Liu, X.-F. Jiang, Y.-L. Chen, Y. Li, Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011). [CrossRef]
  23. Q. Huang, X. Zhang, J. Xia, J. Yu, “Dual-band optical filter based on a single microdisk resonator,” Opt. Lett. 36(23), 4494–4496 (2011). [CrossRef] [PubMed]
  24. Q. Huang, X. Zhang, J. Xia, J. Yu, “Systematic investigation of silicon digital 1×2 electro-optic switch based on a microdisk resonator through carrier injection,” Appl. Phys. B 105(2), 353–361 (2011). [CrossRef]
  25. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009). [CrossRef] [PubMed]
  26. D. Dai, Y. Shi, S. He, L. Wosinski, L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011). [CrossRef] [PubMed]
  27. G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fédéli, F. Milesi, P. Grosse, D. Bouville, E. Cassan, L. Vivien, “High extinction ratio 10 Gbit/s silicon optical modulator,” Opt. Express 19(7), 5827–5832 (2011). [CrossRef] [PubMed]
  28. M. Popovic, C. Manolatou, M. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited