## Variation of exciton emissions of ZnO whiskers reversibly tuned by axial tensile strain |

Optics Express, Vol. 22, Issue 4, pp. 4000-4005 (2014)

http://dx.doi.org/10.1364/OE.22.004000

Acrobat PDF (1224 KB)

### Abstract

Applying strain on semiconductors is a powerful method to modulate its electronic structures and optical properties. In this study, the behavior of liquid-nitrogen exciton emissions and the longitudinal optical phonon–exciton interactions of tensile strained [0001]-orientated ZnO whiskers were investigated using *in situ* cathodoluminescence spectroscopy. It has been found that, under the axial tensile strain, various exciton emissions shift to the long wavelength and their shifts have a linear relationship with the applied strain. This linear relationship and reversible shift suggest that the strain plays a dominating role in manipulating light emissions of axially strained ZnO whiskers.

© 2014 Optical Society of America

## 1. Introduction

*in situ*axial tensile strain. Through careful correlation of measured CL signals with simultaneous strained ZnO whiskers, the exciton emissions of ZnO whiskers were observed to have a linear red-shift with the applied axial tensile strain. The behaviour of the near band edge (NBE) emissions of our ZnO whiskers, including the free exciton (FX), the bound exciton (D

^{0}X), the first order (FX-1LO) and the second order (FX-2LO) longitudinal-optical (LO) phonon–exciton interaction, are explored.

## 2. Experimental details

^{TM}) in the SEM, was served to drive the ZnO whiskers elongation; the ZnO whisker can then be elastically strained. The circulative loading-unloading states can be accurately controlled by the fine steps of the nano-manipulator. The minimal moving step of the linear axis of the nano-manipulator reaches 5 nm. The loading force was recorded by deflection of the Si cantilever, so that the axial tensile strains can be calculated as [22

22. B. Wei, K. Zheng, Y. Ji, Y. F. Zhang, Z. Zhang, and X. D. Han, “Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain,” Nano Lett. **12**(9), 4595–4599 (2012). [CrossRef] [PubMed]

23. M. R. He and J. Zhu, “Defect-dominated diameter dependence of fracture strength in single-crystalline ZnO nanowires: In situ experiments,” Phys. Rev. B **83**(16), 161302 (2011). [CrossRef]

*E*= 140 GPa, c

_{3}_{ij}is the elastic constants [24

24. C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. **96**(7), 075505 (2006). [CrossRef] [PubMed]

*σ*is the applied axial stress on the whisker,

_{c}*S*is the area of the whisker’s cross-section. According to Eq. (1), the strain experienced by the ZnO whisker can be determined by the change of

## 3. Results and discussions

^{0}X), located at 3.357eV with a full-width at half maximum (FWHM) of ~16 meV has the strongest intensity. In addition, the first, second and third order longitudinal optical (LO) phonon replicas of the free excitons can be found at 3.312 eV (FX-1LO), 3.238 eV (FX-2LO) and 3.166 eV (FX-3LO), respectively [19

19. C. P. Dietrich, M. Lange, F. J. Klupfel, H. von Wenckstern, R. Schmidt-Grund, and M. Grundmann, “Strain distribution in bent ZnO microwires,” Appl. Phys. Lett. **98**(3), 031105 (2011). [CrossRef]

^{0}X emission peak of the strain-free ZnO whisker is located at 3.357 eV. When the axial strain was applied up to 2.06%, this D

^{0}X peak was shifted from 3.357 eV to 3.276 eV. Simultaneously, the FX-1LO peak was shifted from 3.312 eV to 3.233 eV, and the FX-2LO shifted from 3.238 eV to 3.159 eV. In addition, the FWHM of these peaks are nearly unchanged under different strains. During the loading and unloading cycles, these peaks in the CL spectra are fully reversible, suggesting that these changes of the band structures for our ZnO whiskers can be reversibly tuned by the elastic strain. Therefore, the corresponding light emission energies, radiative recombination and carrier mobility can then be reversibly tuned using the applied strain.

^{0}X, FX-1LO, FX-2LO emissions and the applied axial tensile strain, these emissions are plotted as a function of the applied tensile strain. Figure 3 shows such plots, from which the red shift in NBE emissions induced by the axial tensile strain exhibits a linear relationship with the elongation strain for the ZnO whisker. These measured values fit well with the relationship between the energy band gap (

*E*) of strained whiskers and the applied axial tensile strain (

_{s}*ε*) [20

_{c}20. X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, and D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. **21**(48), 4937–4941 (2009). [CrossRef]

*E*is the energy band gap of the strain-free ZnO,

_{0}*E*can be measured from the strain-free whiskers,

_{0}*ε*can be estimated from Eq. (1), and the

_{c}*E*can be determined from the CL spectra, so that

_{s}*a*can be calculated from Eq. (2). In fact, from the mathematic point of view,

_{c}*a*represents the slope of the linear plot. From Fig. 3, the fact that all plots are almost parallel to each other suggests that all

_{c}*a*should have a similar value. Our detailed calculation shows

_{c}*a*= −3.96 eV,

_{c}^{FX}*a*= −3.90 eV,

_{c}^{D0X}*a*= −3.84 eV and

_{c}^{FX-1LO}*a*= −3.82 eV. The uniform strain changes the energy of FX phonon replicas, which can be expressed as [25

_{c}^{FX-2LO}25. R. Mendelsberg, M. Allen, S. Durbin, and R. Reeves, “Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO,” Phys. Rev. B **83**(20), 205202 (2011). [CrossRef]

26. S. Xu, W. Guo, S. Du, M. M. Loy, and N. Wang, “Piezotronic Effects on the Optical Properties of ZnO Nanowires,” Nano Lett. **12**(11), 5802–5807 (2012). [CrossRef] [PubMed]

26. S. Xu, W. Guo, S. Du, M. M. Loy, and N. Wang, “Piezotronic Effects on the Optical Properties of ZnO Nanowires,” Nano Lett. **12**(11), 5802–5807 (2012). [CrossRef] [PubMed]

27. X.-W. Fu, Z.-M. Liao, R. Liu, J. Xu, and D. Yu, “Size-Dependent Correlations between Strain and Phonon Frequency in Individual ZnO Nanowires,” ACS Nano **7**(10), 8891–8898 (2013). [CrossRef] [PubMed]

*a*= - (3.86 ± 0.10) eV, similar to that for strained bulk ZnO [28

_{c}^{avg}28. A. Mang, K. Reimann, and S. Rübenacke, “Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure,” Solid State Commun. **94**(4), 251–254 (1995). [CrossRef]

31. A. Segura, J. Sans, F. Manjon, A. Munoz, and M. Herrera-Cabrera, “Optical properties and electronic structure of rock-salt ZnO under pressure,” Appl. Phys. Lett. **83**(2), 278–280 (2003). [CrossRef]

32. T. Onuma, T. Yamaguchi, and T. Honda, “Electron‐beam incident‐angle‐resolved cathodoluminescence studies on bulk ZnO crystals,” Phys. Status Solidi **10**(5c), 869–872 (2013). [CrossRef]

33. H. Z. Xue, N. Pan, R. G. Zeng, M. Li, X. Sun, Z. J. Ding, X. P. Wang, and J. G. Hou, “Probing the Surface Effect on Deep-Level Emissions of an Individual ZnO Nanowire via Spatially Resolved Cathodoluminescence,” J. Phys. Chem. C **113**(29), 12715–12718 (2009). [CrossRef]

## 4. Summary

*in situ*CL spectroscopy at liquid nitrogen temperature. It has been found that the exciton emission shifts toward the long wavelength under the tensile strain, and the shift of the exciton emission varies linearly with the applied axial tensile strain. In this study, the deformation potential of bound exciton of ZnO whiskers under the axial tensile strain has been determined as - (3.86 ± 0.10) eV, similar to the bulk ZnO. The features of constant deformation potential of our [0001]-orientated ZnO whiskers, i.e. the linear relationship between the change of the photon emissions and their experienced axial tensile strain, indicates that the strain effect plays a key role in manipulating exciton emissions of our strained ZnO whiskers. These results provide direct evidence of how electronic structure of ZnO whiskers can be altered by the external tensile strain, which is critical for ultimate design of ZnO nanostructure based nanoelectronic and optoelectronic devices, particularly when these devices are under deformation.

## Acknowledgments

## References and links

1. | E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science |

2. | X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, X. Y. Guo, J. Yuan, and Z. L. Wang, “Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism,” Nano Lett. |

3. | Q. Deng, Y. Cheng, Y. Yue, L. Zhang, Z. Zhang, X. Han, and E. Ma, “Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding,” Acta Mater. |

4. | Y. Yue, P. Liu, Z. Zhang, X. Han, and E. Ma, “Approaching the theoretical elastic strain limit in copper nanowires,” Nano Lett. |

5. | K. Zheng, X. Han, L. H. Wang, Y. F. Zhang, Y. H. Yue, Y. Qin, X. N. Zhang, and Z. Zhang, “Atomic Mechanisms Governing the Elastic Limit and the Incipient Plasticity of Bending Si Nanowires,” Nano Lett. |

6. | R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, and X. Han, “Piezoresistance behaviors of ultra-strained SiC nanowires,” Appl. Phys. Lett. |

7. | Q. Jiang, P. Liu, Y. Ma, Q. Cao, X. Wang, D. Zhang, X. Han, Z. Zhang, and J. Jiang, “Super elastic strain limit in metallic glass films,” Sci. Rep. |

8. | B. Chen, Q. Gao, Y. Wang, X. Liao, Y.-W. Mai, H. H. Tan, J. Zou, S. P. Ringer, and C. Jagadish, “Anelastic Behavior in GaAs Semiconductor Nanowires,” Nano Lett. |

9. | Y. F. Hu, Y. F. Gao, S. Singamaneni, V. V. Tsukruk, and Z. L. Wang, “Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt,” Nano Lett. |

10. | G. Signorello, S. Karg, M. T. Björk, B. Gotsmann, and H. Riel, “Tuning the Light Emission from GaAs Nanowires over 290 meV with Uniaxial Strain,” Nano Lett. |

11. | J. R. Jain, A. Hryciw, T. M. Baer, D. A. Miller, M. L. Brongersma, and R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics |

12. | M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology |

13. | A. Little, A. Hoffman, and N. M. Haegel, “Optical attenuation coefficient in individual ZnO nanowires,” Opt. Express |

14. | M. Ding, D. Zhao, B. Yao, S. e, Z. Guo, L. Zhang, and D. Shen, “The ultraviolet laser from individual ZnO microwire with quadrate cross section,” Opt. Express |

15. | F. Fang, D. Zhao, B. Li, Z. Zhang, D. Shen, and X. Wang, “Bending-induced enhancement of longitudinal optical phonon scattering in ZnO nanowires,” J. Phys. Chem. C |

16. | H. Xue, N. Pan, M. Li, Y. Wu, X. Wang, and J. G. Hou, “Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence,” Nanotechnology |

17. | B. Yan, R. Chen, W. W. Zhou, J. X. Zhang, H. D. Sun, H. Gong, and T. Yu, “Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires,” Nanotechnology |

18. | Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, and D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. |

19. | C. P. Dietrich, M. Lange, F. J. Klupfel, H. von Wenckstern, R. Schmidt-Grund, and M. Grundmann, “Strain distribution in bent ZnO microwires,” Appl. Phys. Lett. |

20. | X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, and D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. |

21. | W. Yang, Y. Ma, Y. Wang, C. Meng, X. Wu, Y. Ye, L. Dai, L. Tong, X. Liu, and Q. Yang, “Bending effects on lasing action of semiconductor nanowires,” Opt. Express |

22. | B. Wei, K. Zheng, Y. Ji, Y. F. Zhang, Z. Zhang, and X. D. Han, “Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain,” Nano Lett. |

23. | M. R. He and J. Zhu, “Defect-dominated diameter dependence of fracture strength in single-crystalline ZnO nanowires: In situ experiments,” Phys. Rev. B |

24. | C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. |

25. | R. Mendelsberg, M. Allen, S. Durbin, and R. Reeves, “Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO,” Phys. Rev. B |

26. | S. Xu, W. Guo, S. Du, M. M. Loy, and N. Wang, “Piezotronic Effects on the Optical Properties of ZnO Nanowires,” Nano Lett. |

27. | X.-W. Fu, Z.-M. Liao, R. Liu, J. Xu, and D. Yu, “Size-Dependent Correlations between Strain and Phonon Frequency in Individual ZnO Nanowires,” ACS Nano |

28. | A. Mang, K. Reimann, and S. Rübenacke, “Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure,” Solid State Commun. |

29. | J. Wrzesinski and D. Fröhlich, “Two-photon and three-photon spectroscopy of ZnO under uniaxial stress,” Phys. Rev. B |

30. | J. Rowe, M. Cardona, and F. Pollak, “Valence band symmetry and deformation potentials of ZnO,” Solid State Commun. |

31. | A. Segura, J. Sans, F. Manjon, A. Munoz, and M. Herrera-Cabrera, “Optical properties and electronic structure of rock-salt ZnO under pressure,” Appl. Phys. Lett. |

32. | T. Onuma, T. Yamaguchi, and T. Honda, “Electron‐beam incident‐angle‐resolved cathodoluminescence studies on bulk ZnO crystals,” Phys. Status Solidi |

33. | H. Z. Xue, N. Pan, R. G. Zeng, M. Li, X. Sun, Z. J. Ding, X. P. Wang, and J. G. Hou, “Probing the Surface Effect on Deep-Level Emissions of an Individual ZnO Nanowire via Spatially Resolved Cathodoluminescence,” J. Phys. Chem. C |

**OCIS Codes**

(160.4760) Materials : Optical properties

(160.6000) Materials : Semiconductor materials

(250.1500) Optoelectronics : Cathodoluminescence

(160.4236) Materials : Nanomaterials

**ToC Category:**

Materials

**History**

Original Manuscript: October 30, 2013

Revised Manuscript: January 31, 2014

Manuscript Accepted: February 4, 2014

Published: February 13, 2014

**Citation**

Bin Wei, Yuan Ji, Xiao-Dong Han, Ze Zhang, and Jin Zou, "Variation of exciton emissions of ZnO whiskers reversibly tuned by axial tensile strain," Opt. Express **22**, 4000-4005 (2014)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-4000

Sort: Year | Journal | Reset

### References

- E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 277(5334), 1971–1975 (1997). [CrossRef]
- X. D. Han, Y. F. Zhang, K. Zheng, X. N. Zhang, Z. Zhang, Y. J. Hao, X. Y. Guo, J. Yuan, Z. L. Wang, “Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism,” Nano Lett. 7(2), 452–457 (2007). [CrossRef] [PubMed]
- Q. Deng, Y. Cheng, Y. Yue, L. Zhang, Z. Zhang, X. Han, E. Ma, “Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding,” Acta Mater. 59(17), 6511–6518 (2011). [CrossRef]
- Y. Yue, P. Liu, Z. Zhang, X. Han, E. Ma, “Approaching the theoretical elastic strain limit in copper nanowires,” Nano Lett. 11(8), 3151–3155 (2011). [CrossRef] [PubMed]
- K. Zheng, X. Han, L. H. Wang, Y. F. Zhang, Y. H. Yue, Y. Qin, X. N. Zhang, Z. Zhang, “Atomic Mechanisms Governing the Elastic Limit and the Incipient Plasticity of Bending Si Nanowires,” Nano Lett. 9(6), 2471–2476 (2009). [CrossRef] [PubMed]
- R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, X. Han, “Piezoresistance behaviors of ultra-strained SiC nanowires,” Appl. Phys. Lett. 101(23), 233109 (2012). [CrossRef]
- Q. Jiang, P. Liu, Y. Ma, Q. Cao, X. Wang, D. Zhang, X. Han, Z. Zhang, J. Jiang, “Super elastic strain limit in metallic glass films,” Sci. Rep. 2, 852 (2012).
- B. Chen, Q. Gao, Y. Wang, X. Liao, Y.-W. Mai, H. H. Tan, J. Zou, S. P. Ringer, C. Jagadish, “Anelastic Behavior in GaAs Semiconductor Nanowires,” Nano Lett. 13(7), 3169–3172 (2013). [CrossRef] [PubMed]
- Y. F. Hu, Y. F. Gao, S. Singamaneni, V. V. Tsukruk, Z. L. Wang, “Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt,” Nano Lett. 9(7), 2661–2665 (2009). [CrossRef] [PubMed]
- G. Signorello, S. Karg, M. T. Björk, B. Gotsmann, H. Riel, “Tuning the Light Emission from GaAs Nanowires over 290 meV with Uniaxial Strain,” Nano Lett. 13, 917–924 (2012). [PubMed]
- J. R. Jain, A. Hryciw, T. M. Baer, D. A. Miller, M. L. Brongersma, R. T. Howe, “A micromachining-based technology for enhancing germanium light emission via tensile strain,” Nat. Photonics 6(6), 398–405 (2012). [CrossRef]
- M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology 20(33), 332001 (2009). [CrossRef] [PubMed]
- A. Little, A. Hoffman, N. M. Haegel, “Optical attenuation coefficient in individual ZnO nanowires,” Opt. Express 21(5), 6321–6326 (2013). [CrossRef] [PubMed]
- M. Ding, D. Zhao, B. Yao, S. e, Z. Guo, L. Zhang, D. Shen, “The ultraviolet laser from individual ZnO microwire with quadrate cross section,” Opt. Express 20(13), 13657–13662 (2012). [CrossRef] [PubMed]
- F. Fang, D. Zhao, B. Li, Z. Zhang, D. Shen, X. Wang, “Bending-induced enhancement of longitudinal optical phonon scattering in ZnO nanowires,” J. Phys. Chem. C 114(29), 12477–12480 (2010). [CrossRef]
- H. Xue, N. Pan, M. Li, Y. Wu, X. Wang, J. G. Hou, “Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence,” Nanotechnology 21(21), 215701 (2010). [CrossRef] [PubMed]
- B. Yan, R. Chen, W. W. Zhou, J. X. Zhang, H. D. Sun, H. Gong, T. Yu, “Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires,” Nanotechnology 21(44), 445706 (2010). [CrossRef] [PubMed]
- Z.-M. Liao, H.-C. Wu, Q. Fu, X. Fu, X. Zhu, J. Xu, I. V. Shvets, Z. Zhang, W. Guo, Y. Leprince-Wang, Q. Zhao, X. Wu, D.-P. Yu, “Strain induced exciton fine-structure splitting and shift in bent ZnO microwires,” Sci. Rep. 2,452 (2012).
- C. P. Dietrich, M. Lange, F. J. Klupfel, H. von Wenckstern, R. Schmidt-Grund, M. Grundmann, “Strain distribution in bent ZnO microwires,” Appl. Phys. Lett. 98(3), 031105 (2011). [CrossRef]
- X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Lu, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, D. P. Yu, “Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater. 21(48), 4937–4941 (2009). [CrossRef]
- W. Yang, Y. Ma, Y. Wang, C. Meng, X. Wu, Y. Ye, L. Dai, L. Tong, X. Liu, Q. Yang, “Bending effects on lasing action of semiconductor nanowires,” Opt. Express 21(2), 2024–2031 (2013). [CrossRef] [PubMed]
- B. Wei, K. Zheng, Y. Ji, Y. F. Zhang, Z. Zhang, X. D. Han, “Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain,” Nano Lett. 12(9), 4595–4599 (2012). [CrossRef] [PubMed]
- M. R. He, J. Zhu, “Defect-dominated diameter dependence of fracture strength in single-crystalline ZnO nanowires: In situ experiments,” Phys. Rev. B 83(16), 161302 (2011). [CrossRef]
- C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96(7), 075505 (2006). [CrossRef] [PubMed]
- R. Mendelsberg, M. Allen, S. Durbin, R. Reeves, “Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO,” Phys. Rev. B 83(20), 205202 (2011). [CrossRef]
- S. Xu, W. Guo, S. Du, M. M. Loy, N. Wang, “Piezotronic Effects on the Optical Properties of ZnO Nanowires,” Nano Lett. 12(11), 5802–5807 (2012). [CrossRef] [PubMed]
- X.-W. Fu, Z.-M. Liao, R. Liu, J. Xu, D. Yu, “Size-Dependent Correlations between Strain and Phonon Frequency in Individual ZnO Nanowires,” ACS Nano 7(10), 8891–8898 (2013). [CrossRef] [PubMed]
- A. Mang, K. Reimann, S. Rübenacke, “Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure,” Solid State Commun. 94(4), 251–254 (1995). [CrossRef]
- J. Wrzesinski, D. Fröhlich, “Two-photon and three-photon spectroscopy of ZnO under uniaxial stress,” Phys. Rev. B 56(20), 13087–13093 (1997). [CrossRef]
- J. Rowe, M. Cardona, F. Pollak, “Valence band symmetry and deformation potentials of ZnO,” Solid State Commun. 6(4), 239–242 (1968). [CrossRef]
- A. Segura, J. Sans, F. Manjon, A. Munoz, M. Herrera-Cabrera, “Optical properties and electronic structure of rock-salt ZnO under pressure,” Appl. Phys. Lett. 83(2), 278–280 (2003). [CrossRef]
- T. Onuma, T. Yamaguchi, T. Honda, “Electron‐beam incident‐angle‐resolved cathodoluminescence studies on bulk ZnO crystals,” Phys. Status Solidi 10(5c), 869–872 (2013). [CrossRef]
- H. Z. Xue, N. Pan, R. G. Zeng, M. Li, X. Sun, Z. J. Ding, X. P. Wang, J. G. Hou, “Probing the Surface Effect on Deep-Level Emissions of an Individual ZnO Nanowire via Spatially Resolved Cathodoluminescence,” J. Phys. Chem. C 113(29), 12715–12718 (2009). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.