## Experimental demonstration of DFB semiconductor lasers with varying longitudinal parameters |

Optics Express, Vol. 22, Issue 4, pp. 4059-4064 (2014)

http://dx.doi.org/10.1364/OE.22.004059

Acrobat PDF (1493 KB)

### Abstract

The distributed-coupling-coefficient and distributed-coupling-coefficient corrugation-pitch-modulated DFB lasers are experimentally demonstrated. The proposed lasers maintain good side mode suppression ratio over 50dBfrom 2.5 times to 12.5 times threshold current. The grating profiles of varying longitudinal parameters are equivalently obtained by specially designed sampled Bragg gratings and fabricated by conventional holographic exposure and μm-level photolithography.

© 2014 Optical Society of America

## 1. Introduction

1. P. Correc, “Stability of phase-shifted DFB lasers against hole burning,” IEEE J. Quantum Electron. **30**(11), 2467–2476 (1994). [CrossRef]

2. J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. **25**(6), 1261–1279 (1989). [CrossRef]

3. T. Fessant, “Influence of a nonuniform coupling coefficient on the static and large signal dynamic behavior of Bragg-detuned DFB lasers,” J. Lightwave Technol. **16**(3), 419–427 (1998). [CrossRef]

4. M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photonics Technol. Lett. **1**(8), 200–201 (1989). [CrossRef]

5. G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. **53**(3), 178–179 (1988). [CrossRef]

6. B. S. K. Lo and H. Ghafouri-Shiraz, “Spectral characteristics of distributed feedback laser diodes with distributed coupling coefficient,” J. Lightwave Technol. **13**(2), 200–212 (1995). [CrossRef]

3. T. Fessant, “Influence of a nonuniform coupling coefficient on the static and large signal dynamic behavior of Bragg-detuned DFB lasers,” J. Lightwave Technol. **16**(3), 419–427 (1998). [CrossRef]

8. T. Fessant, “Influence of a nonuniform coupling coefficient on the static and large signal dynamic behavior of Bragg-detuned DFB lasers,” J. Lightwave Technol. **16**(3), 419–427 (1998). [CrossRef]

9. A. Talneau, J. Charil, A. Ougazzaden, and J. C. Bouley, “High power operation of phase-shifted DFB lasers with amplitude modulated coupling coefficient,” Electron. Lett. **28**(15), 1395–1396 (1992). [CrossRef]

10. S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, and R. Schatz, “DFB laser with nonuniform coupling coefficient realized by double-layer buried grating,” IEEE Photonics Technol. Lett. **5**(10), 1128–1131 (1993). [CrossRef]

11. J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express **17**(7), 5240–5245 (2009). [CrossRef] [PubMed]

12. Y. Shi, S. Li, L. Li, R. Guo, T. Zhang, R. Liu, W. Li, L. Lu, S. Tang, Y. Zhou, J. Li, and X. Chen, “Study of the multiwavelength DFB semiconductor laser array based on the reconstruction-equivalent-chirptechnique,” J. Lightwave Technol. **31**(20), 3243–3250 (2013). [CrossRef]

## 2. Principle and design

^{th}sub-grating κ

_{m}in a SBG can be expressed as below [13

13. V. Veerasubramanian, G. Beaudin, A. Giguere, B. LeDrogoff, V. Aimez, and A. G. Kirk, “Design and demonstration of apodizedcomb filters on SOI,” IEEE Photonics J. **4**(4), 1133–1139 (2012). [CrossRef]

_{0}is the coupling coefficient of uniform seed grating, γ is the duty cycle of the sampling structure. Hence the varying coupling coefficient κ

_{± 1}in ± 1st sub-grating can be obtained by changing γ. When γ = 0.5, κ

_{± 1}has the largest value. According to Ref [4

4. M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photonics Technol. Lett. **1**(8), 200–201 (1989). [CrossRef]

^{th}sub-grating can be expressed as [14

14. S. Li, R. Li, L. Li, R. Liu, L. Gao, and X. Chen, “Dual wavelength semiconductor laser based on reconstruction-equivalent-chirp technique,” IEEE Photonics Technol. Lett. **25**(3), 299–302 (2013). [CrossRef]

_{c}and P

_{s}are the sampling periods in and out of the PAR, respectively. L is the length of the PAR, θ denotes the phase shift. The schematics of equivalent DCC and DCC-CPMDFB grating structures compared to a real DCC grating structure are shown in Fig. 1. In real DCC grating, the grating period is uniform along the cavity with a π phase shift inserted in the center. The grating depth is larger in the center region and smaller on both sides for a larger coupling coefficient in the center and a smaller coupling coefficient on the sides. In equivalent DCC and DCC-CPM structures, the seed grating Λ

_{0}is uniform. According to Eq. (1), the duty cycle γ is less than 0.5 in side sections for smaller coupling coefficient κ

_{s}. The sampling periods are the same and an equivalent π phase shift is inserted in the center of equivalent DCC structure. An equivalent PAR with π phase shift, in which the sampling period is different from the outside ones, locates in the center of equivalent DCC-CPM structure. The length of PAR corresponds to the center section L

_{c}.

15. T. Makino, “Transfer-matrix analysis of the intensity and phase noise of multisection DFB semiconductorlasers,” IEEE J. Quantum Electron. **27**(11), 2404–2414 (1991). [CrossRef]

16. W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial holeburning,” IEEE J. Sel. Top. Quantum Electron. **3**(2), 547–554 (1997). [CrossRef]

_{B}of 0th SBG grating is designed at 1490nm and the seed grating period is about 232nm. The −1st sub-grating (used as resonance wavelength for lasing) is near the material gain curve peak at 1550 nm. The coupling coefficient κ of seed grating is about 140cm

^{−1}. In both lasers, the lengths of L

_{c}and L

_{s}are 150μm and 75μm with the duty circle 0.5 and 0.27, respectively. Hence the coupling coefficient κ

_{c}to κ

_{s}equals 4:3. The sampling period of DCC laser is designed as 6.012μm. The sampling period in the side sections of DCC-CPM laser is designed as 6.012μm and that in the center section (the PAR section) is 6.137μm.

_{x}Ga

_{y}In

_{z}As separate-confinement-heterostructure (SCH) layer, a five pairs of compressively strained Al

_{x}Ga

_{y}In

_{z}AsMQW, an upper gradual Al

_{x}Ga

_{y}In

_{z}As SCH and a 1.3Q InGaAsP grating layer are successively grown on an S-doped n-type InP (100)-oriented substrate. The seeding grating and sampling structures [Fig. 3(b)] are formed by holographic exposure and photolithography. A p-type cladding InP layer and a p-InGaAs contact layer are re-grown by MOCVD. Then 2.5μm ridge waveguides are etched and buried with SiO

_{2}. Ti-Au patterned p-contacts and AuGeNi n-contacts are formed on the p-side and the n-side, respectively. The front and rear facets are coated with antireflection film (AR 1%) and high-reflection (HR 90%) film, respectively.

## 3. Experimental results

## 4. Conclusion

## Acknowledgments

## References and links

1. | P. Correc, “Stability of phase-shifted DFB lasers against hole burning,” IEEE J. Quantum Electron. |

2. | J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. |

3. | T. Fessant, “Influence of a nonuniform coupling coefficient on the static and large signal dynamic behavior of Bragg-detuned DFB lasers,” J. Lightwave Technol. |

4. | M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photonics Technol. Lett. |

5. | G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. |

6. | B. S. K. Lo and H. Ghafouri-Shiraz, “Spectral characteristics of distributed feedback laser diodes with distributed coupling coefficient,” J. Lightwave Technol. |

7. | T. Fessant, “Threshold and above-threshold analysis of corrugation-pitch-modulated DFB lasers with inhomogeneous coupling coefficient,” IEE Proc. Optoelectron. |

8. | T. Fessant, “Influence of a nonuniform coupling coefficient on the static and large signal dynamic behavior of Bragg-detuned DFB lasers,” J. Lightwave Technol. |

9. | A. Talneau, J. Charil, A. Ougazzaden, and J. C. Bouley, “High power operation of phase-shifted DFB lasers with amplitude modulated coupling coefficient,” Electron. Lett. |

10. | S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, and R. Schatz, “DFB laser with nonuniform coupling coefficient realized by double-layer buried grating,” IEEE Photonics Technol. Lett. |

11. | J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express |

12. | Y. Shi, S. Li, L. Li, R. Guo, T. Zhang, R. Liu, W. Li, L. Lu, S. Tang, Y. Zhou, J. Li, and X. Chen, “Study of the multiwavelength DFB semiconductor laser array based on the reconstruction-equivalent-chirptechnique,” J. Lightwave Technol. |

13. | V. Veerasubramanian, G. Beaudin, A. Giguere, B. LeDrogoff, V. Aimez, and A. G. Kirk, “Design and demonstration of apodizedcomb filters on SOI,” IEEE Photonics J. |

14. | S. Li, R. Li, L. Li, R. Liu, L. Gao, and X. Chen, “Dual wavelength semiconductor laser based on reconstruction-equivalent-chirp technique,” IEEE Photonics Technol. Lett. |

15. | T. Makino, “Transfer-matrix analysis of the intensity and phase noise of multisection DFB semiconductorlasers,” IEEE J. Quantum Electron. |

16. | W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial holeburning,” IEEE J. Sel. Top. Quantum Electron. |

17. | X. Li and W.-P. Huang, “Simulation of DFB semiconductor lasers incorporating thermal effects,” IEEE J. Quantum Electron. |

**OCIS Codes**

(140.3490) Lasers and laser optics : Lasers, distributed-feedback

(140.5960) Lasers and laser optics : Semiconductor lasers

**ToC Category:**

Lasers and Laser Optics

**History**

Original Manuscript: November 25, 2013

Revised Manuscript: January 29, 2014

Manuscript Accepted: February 10, 2014

Published: February 13, 2014

**Citation**

Simin Li, Renjia Guo, Lianyan Li, Yuechun Shi, Jun Lu, Linlin Lu, Junshou Zheng, and Xiangfei Chen, "Experimental demonstration of DFB semiconductor lasers with varying longitudinal parameters," Opt. Express **22**, 4059-4064 (2014)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-4059

Sort: Year | Journal | Reset

### References

- P. Correc, “Stability of phase-shifted DFB lasers against hole burning,” IEEE J. Quantum Electron. 30(11), 2467–2476 (1994). [CrossRef]
- J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, “The design assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 25(6), 1261–1279 (1989). [CrossRef]
- T. Fessant, “Influence of a nonuniform coupling coefficient on the static and large signal dynamic behavior of Bragg-detuned DFB lasers,” J. Lightwave Technol. 16(3), 419–427 (1998). [CrossRef]
- M. Okai, N. Chinone, H. Taira, T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photonics Technol. Lett. 1(8), 200–201 (1989). [CrossRef]
- G. P. Agrawal, J. E. Geusic, P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. 53(3), 178–179 (1988). [CrossRef]
- B. S. K. Lo, H. Ghafouri-Shiraz, “Spectral characteristics of distributed feedback laser diodes with distributed coupling coefficient,” J. Lightwave Technol. 13(2), 200–212 (1995). [CrossRef]
- T. Fessant, “Threshold and above-threshold analysis of corrugation-pitch-modulated DFB lasers with inhomogeneous coupling coefficient,” IEE Proc. Optoelectron. 144(6), 365–376 (1997).
- T. Fessant, “Influence of a nonuniform coupling coefficient on the static and large signal dynamic behavior of Bragg-detuned DFB lasers,” J. Lightwave Technol. 16(3), 419–427 (1998). [CrossRef]
- A. Talneau, J. Charil, A. Ougazzaden, J. C. Bouley, “High power operation of phase-shifted DFB lasers with amplitude modulated coupling coefficient,” Electron. Lett. 28(15), 1395–1396 (1992). [CrossRef]
- S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, R. Schatz, “DFB laser with nonuniform coupling coefficient realized by double-layer buried grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993). [CrossRef]
- J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express 17(7), 5240–5245 (2009). [CrossRef] [PubMed]
- Y. Shi, S. Li, L. Li, R. Guo, T. Zhang, R. Liu, W. Li, L. Lu, S. Tang, Y. Zhou, J. Li, X. Chen, “Study of the multiwavelength DFB semiconductor laser array based on the reconstruction-equivalent-chirptechnique,” J. Lightwave Technol. 31(20), 3243–3250 (2013). [CrossRef]
- V. Veerasubramanian, G. Beaudin, A. Giguere, B. LeDrogoff, V. Aimez, A. G. Kirk, “Design and demonstration of apodizedcomb filters on SOI,” IEEE Photonics J. 4(4), 1133–1139 (2012). [CrossRef]
- S. Li, R. Li, L. Li, R. Liu, L. Gao, X. Chen, “Dual wavelength semiconductor laser based on reconstruction-equivalent-chirp technique,” IEEE Photonics Technol. Lett. 25(3), 299–302 (2013). [CrossRef]
- T. Makino, “Transfer-matrix analysis of the intensity and phase noise of multisection DFB semiconductorlasers,” IEEE J. Quantum Electron. 27(11), 2404–2414 (1991). [CrossRef]
- W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial holeburning,” IEEE J. Sel. Top. Quantum Electron. 3(2), 547–554 (1997). [CrossRef]
- X. Li, W.-P. Huang, “Simulation of DFB semiconductor lasers incorporating thermal effects,” IEEE J. Quantum Electron. 31(10), 1846–1855 (1995).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.