OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6239–6248
« Show journal navigation

Short pulse carrier-envelope phase absolute single-shot measurement by photoionization of gases with a guided laser beam

V. V. Strelkov, E. Mével, and E. Constant  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6239-6248 (2014)
http://dx.doi.org/10.1364/OE.22.006239


View Full Text Article

Acrobat PDF (930 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an all optical approach to measure the value of the carrier-envelope phase (CEP) of a short intense laser pulse. This method relies on photo-ionization of gases with a guided laser beam. This approach that provides the absolute value of the CEP, is compatible with single shot characterization, is scalable in wavelength, does not suffer from bandwidth limitation and is largely intensity independent. It has also the potential to provide a full characterization of the pulse profile via high order autocorrelation on a single shot basis.

© 2014 Optical Society of America

1. Introduction

With the appearance of attoscience and the development of strong field physics based on few cycle pulses, the carrier-envelope phase (CEP) [1

1. A. Baltuška, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421(6923), 611–615 (2003). [CrossRef] [PubMed]

] of a pulse is often a crucial parameter. Most of the CEP measurement techniques are based on the second harmonic generation [2

2. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, and H. Takahashi, “Single-shot measurement of carrier-envelope phase changes by spectral interferometry,” Opt. Lett. 26(18), 1436–1438 (2001). [CrossRef] [PubMed]

6

6. M. Miranda, Th. Fordell, C. Arnold, A. L’Huillier, and H. Crespo, “Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges,” Opt. Express 20(1), 688–697 (2012). [CrossRef] [PubMed]

] or photoelectron spectra detection [7

7. S. Micheau, Zh. Chen, T. Morishita, A.-T. Le, and C. D. Lin, “Robust carrier-envelope phase retrieval of few-cycle laser pulses from high-energy photoelectron spectra in the above-threshold ionization of atoms,” J. Phys. At. Mol. Opt. Phys. 42(6), 065402 (2009). [CrossRef]

9

9. G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. De Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414(6860), 182–184 (2001). [CrossRef] [PubMed]

]. They usually provide relative CEP values. One of the approaches to measure the absolute CEP value was suggested and studied theoretically in [10

10. S. Chelkowski and A. D. Bandrauk, “Asymmetries in strong-field photoionization by few-cycle laser pulses: Kinetic-energy spectra and semiclassical explanation of the asymmetries of fast and slow electrons,” Phys. Rev. A 71(5), 053815 (2005). [CrossRef]

]; it is based on measuring the asymmetry in the left-right photoelectron spectra. However, in practice highly sophisticated setups are required to provide the exact value of the CEP [11

11. T. Wittmann, B. Horvath, W. Helml, M. G. Schätzel, X. Gu, A. L. Cavalieri, G. G. Paulus, and R. Kienberger, “Single-shot carrier–envelope phase measurement of few-cycle laser pulses,” Nat. Phys. 5(5), 357–362 (2009). [CrossRef]

,12

12. T. Rathje, N. G. Johnson, M. Möller, F. Süßmann, D. Adolph, M. Kübel, R. Kienberger, M. F. Kling, G. G. Paulus, and A. M. Sayler, “Review of attosecond resolved measurement and control via carrier–envelope phase tagging with above-threshold ionization,” J. Phys. At. Mol. Opt. Phys. 45(7), 074003 (2012).

].

In this paper we present and numerically investigate a new method to extract the CEP of a few-cycle laser pulse. The method is based on the extreme sensitivity of the ionization rate on the instantaneous field of a short pulse and relies on propagation in a guided geometry (capillary) to change the CEP of the pulse and consecutively the laser field. For a given intensity the peak field strength depends on the CEP: it is maximal for a cos-like pulse and minimal for a sin-like one. The difference is small even for a few-cycle laser pulse, but the extreme sensitivity of the tunneling ionization rate on the field strength leads to a measurable dependence of the ionization probability on the CEP (even though for the cos-like pulse there is one (dominating) ionization event, while for the sin-like there are two). Guided propagation of a pulse in a capillary provides periodic CEP variation, which leads to the ionization degree modulation when a low pressure gas is injected in the capillary. Measuring the spatial evolution of this modulation allows measuring the incident pulse CEP. When the laser is guided in a transparent glass capillary, this ionization rate can be optically observed via the fluorescence emitted by the ionized gas as it recombines. This approach is well adapted to few cycle pulses and provides a direct measurement of their CEP (modulo π). This measure provides the real value of the CEP under the only assumption (justified in the tunneling regime) that the ionization rate is maximum for a cosine pulse (CEP = 0) while most of the other technique provide only relative CEP values. The sensitivity of this approach can even be improved by using the laser pulse in conjunction with its second harmonic. This allows CEP measurement for longer pulses.

In our studies the laser pulse propagation in the EH11 mode of a capillary [13

13. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964). [CrossRef]

] is simulated and ionization probability is calculated as a function of the propagation distance. We show how to extract the pulse CEP value and find maximal pulse durations for which this method is valid.

The experimental realization of this approach would require to guide the ultrashort pulse in a glass capillary filled with low pressure Helium (or other gases depending on the laser intensity and wavelength) and to observe transversally the emitted fluorescence with spatial resolution (by imaging the fluorescence channel onto a CCD camera for instance). In a guided geometry, intensity variation that occurs because of propagation losses, can be directly characterized by measuring the fluorescence after averaging over all the CEP values.

2. Theoretical methods

2.1 Pulse propagation

Simulating the pulse propagation we present the field at the entrance to the capillary as:
E˜(t,r,z=0)=E(t,z=0)f(r)
(1)
where r is the radial coordinate as here a cylindrical symmetry is assumed.

The temporal structure of this field is defined as:
E(t,z=0)=1cA(t)t
(2)
A(t)=A0exp[2ln2(tτ)2]sin(ω0t+φCEP)
(3)
Defining the field in form Eqs. (2) and (3) guarantees that the total time integral of the field is zero for arbitrary pulse duration τ and carrier-envelope phase φCEP.

We assume that the spatial structure of the field in the capillary is described by EH11 mode. Note that even if initially there are high order modes in this distribution (say, due to weak coupling of the beam in the capillary), they can disappear after some propagation distance because they have higher attenuation constant than EH11 mode [13

13. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964). [CrossRef]

]. Thus the transverse distribution of the field in Eq. (1) is given by
f(r)=J0(ura)
where a is a capillary radius, J0 is a zero-order Bessel function, u=2.405.

Propagation induces a dispersion on the pulse. This negative dispersion leads to a pulse broadening and, since phase and group velocities are different, CEP continuously shifts during propagation. Having in mind the broadbandness of the few-cycle laser pulse we describe the field modification while propagation taking into account all dispersion orders. To do this we calculate the field spectrum S(ω,z=0) at the capillary entrance and write the spectrum after propagation as
S(ω,z)=S(ω,0)exp{i[β(ω)+iα(ω)]z}
where the phase constant and attenuation constant are [13

13. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964). [CrossRef]

,14

14. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves (Nauka, 1990).

]:
β(ω)=nωc[112(ucnωa)2]
(4)
α(ω)=(ucnωa)2ν2+n22aν2n2
(5)
where n and ν are refractive indexes of the gas filling the capillary and the medium of the capillary walls, respectively. Below throughout the paper except the Discussion section we consider low gas pressure and thus assumen=1.

Finally, we calculate the inverse Fourier transform E(t,z) of the propagated spectrum S(ω,z) and find the full laser field after propagation as

E˜(t,r,z)=E(t,z)f(r)
(6)

Note, that for the parameters considered in the paper the attenuation is relatively low, i.e. the ionization signal disappears mainly due to the pulse temporal broadening.

For our studies, an important value is the distance, LCEP, over which propagation provides a π CEP variation. Taking into account only the first order dispersion of the waveguide (and neglecting the low pressure gas dispersion), this distance can be approximately found from the difference of the group and phase velocity:
LCEP=2π2a2λ0u2
(7)
where λ0 is the central wavelength of the laser pulse. To choose the appropriate capillary radius we express it in terms of LCEP:

a=uπλ0LCEP2
(8)

The distance of the pulse spreading is (see, for instance the textbook [14

14. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves (Nauka, 1990).

]):
Lsp=τ24ln2|dvg1dω|
(9)
where vg is a group velocity. For the ratio of the spreading distance and the 2π CEP variation distance we find:

LspLCEP=πln2(ω0τ2π)2
(10)

Note, that ω0τ2π is a number of the cycles in the pulse. Thus the latter equation shows that even for a few-cycle pulse there are several CEP oscillations at the spreading distance.

2.2 Photoionization

The suggested method of the CEP measurement demands strong and monotonic dependence of the ionization rate on the field strength. The tunnel ionization satisfies this requirement very well, whereas multiphoton ionization does not provide monotonic dependence (see, for instance, numerical studies [15

15. E. A. Volkova, V. V. Gridchin, A. M. Popov, and O. V. Tikhonova, “Tunneling ionization of a hydrogen atom in short and ultrashort laser pulses,” J. Exp. Theor. Phys. 102(1), 40–52 (2006). [CrossRef]

]). So below in this paper the parameters are chosen to provide tunnel ionization of the gas in the capillary.

The instantaneous ionization rate is calculated as an ionization rate in a static field which value is equal to the instantaneous laser field strength. To find the total ionization probability this rate is integrated over the laser pulse. Such quasistatic approximation is applicable in the tunneling limit. Obviously, the ionization probability found with this approach is CEP dependent. The static field tunneling ionization rate for a gas with the ionization potential Ip is calculated using expression from the textbook [16

16. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon Press, 1977).

] (in atomic units):
w(t)=4F(t)exp[23F(t)]
(11)
where
F(t)=E(t)(2Ip)3/2
(12)
is a normalized field strength.

Note, that this formula agrees very well with numerical TDSE solution results [15

15. E. A. Volkova, V. V. Gridchin, A. M. Popov, and O. V. Tikhonova, “Tunneling ionization of a hydrogen atom in short and ultrashort laser pulses,” J. Exp. Theor. Phys. 102(1), 40–52 (2006). [CrossRef]

,17

17. D. Bauer, “Emergence of classical orbits in few-cycle above-threshold ionization of atomic hydrogen,” Phys. Rev. Lett. 94(11), 113001 (2005). [CrossRef] [PubMed]

] in the intensity range used in our paper (about 1014 - 1015 W/cm2).

To mimic the ionization throughout the capillary, it is also necessary to consider the radial intensity profile of the guided beam. Below in this paper we present the ionization degree averaged over the capillary radius to take into account this radial intensity profile:
p(z)=1πa20a2πrdrw(E˜(t,r,z))dt
(13)
where the propagated field E˜(t,r,z) is given by Eq. (6)

3. Calculation results

The ionization rate given by Eq. (11) saturates with the normalized field strength, so we have to use relatively low values of this parameter to provide strong dependence of the ionization rate on the CEP. On the other hand, the ionization should occur in the tunneling regime, i.e. the Keldysh parameter
γ=ω02IpE0
should be sufficiently less than unity (here E0 is the laser pulse peak field). Both requirements (low F and low γ) can be satisfied for low ω0 and high Ip. Below we consider cases of low ω0 (few-micron radiation ionizing Ar atoms) and high Ip (800 nm radiation ionizing He+ ions), correspondingly. In both cases, we consider the peak laser intensity corresponding to γ=0.5. The pressure of the medium filling the capillary is supposed to be low enough in such a way linear and non-linear refraction of the medium does not influence the results. The capillary radius is chosen to provide LCEP=2mm as this length is easy to observe experimentally by imaging onto a CCD.

In Fig. 1 we show the ionization degree calculated using Eq. (13) for pulses with Gaussian envelope and different initial CEPs and durations (FWHM durations of intensity envelope are presented in the figure) for a 3 µm pulse central wavelength.
Fig. 1 Calculated ionization degree as a function of the propagation length for the 3 µm wavelength radiation. The radius of the capillary is 42 µm, it is filled with Argon at low pressure.
We observe clear spatial modulations of the medium ionization. Comparing results for sin- and cos-like incident fields, we see that they provide antiphase ionization spatial modulation. We observe that the cos pulse leads to a maximum ionization at the entrance of the capillary, while the sin pulse provides a maximum only after a propagation over Lcep/2 that changes the incoming pulse in a cosine pulse. Thus, the incident CEP of the pulse can be found from the phase of ionization degree modulation. Note, that the phase of the oscillations does not depend on the incident pulse intensity and only the amplitude is affected by this intensity (because Eq. (11) provides monotonic dependence of the ionization probability on the field strength). Thus, the method is applicable for experimental measurement of the CEP of sequential laser pulses even in presence of intensity fluctuations.

Figure 1 also shows that the depth of the ionization modulation decreases with the pulse duration increase. When the pulse duration varies from 15 fs to 20 fs (from 1.5 to 2.0 cycles at 3 µm), the ionization modulation depth decreases from 26% to 2.7% but both values can easily be observed experimentally.

Considering 800 nm radiation, we use He+ as an ionizing medium, 1.8 1015 W/cm2 peak intensity (providing γ=0.5) and 22 µm capillary radius (providing LCEP=2mm). We find the behavior of the ionization degree very similar to the one presented in Fig. 1. When the pulse duration increases from 4 fs (1.5 cycles) to 5.0 fs (1.9 cycles), the ionization modulation depth decreases from 16% to 3%. Thus, in this case the upper limit of the pulse duration (measured in optical period) for which the method is applicable is slightly lower than for the few-micron radiation. The lower efficiency of the method for 800 nm wavelength is due to higher field values used in this case to provide tunneling ionization, leading to lower sensitivity of ionization on the field strength. Assuming that 1% modulation depth is a limit of its experimental measurement we find the maximal pulse durations up to which our method is applicable. The pulse durations calculated for the wavelengths 3 µm, 2 µm, 800nm are presented in Table 1.

Table 1. Maximal Pulse Duration up to Which Our Method is Applicable, Calculated for Different Fundamental Wavelengths and Observable Modulation Depths

table-icon
View This Table
Moreover, using a high dynamics (16 bit) camera and post processing by Fourier transform to extract the oscillatory part, one can assume the 0.1% modulation depth as a reasonably conservative limit of this technique; reducing the observable modulation depth increases of the maximum pulse duration (see Table 1) that can be characterized with this approach.

In the following calculations, we consider the 3 µm radiation propagating in 43 µm radius capillary filled with Argon; its incident intensity is 3.7 1013 W/cm2 corresponding to γ=0.5.

This approach, sensitive to the electric field, can be compared to a new autocorrelation approach based on chirp control [6

6. M. Miranda, Th. Fordell, C. Arnold, A. L’Huillier, and H. Crespo, “Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges,” Opt. Express 20(1), 688–697 (2012). [CrossRef] [PubMed]

] that provides the pulse intensity profile by observing the impact of chirp on its doubling. Here we use a higher non linear order and CEP oscillations provide a self calibration of the chirp and the capillary characteristics. Moreover, it also provides access to the chirp of the pulse as shown in the following.

We write the spectrum of the chirped pulse at the capillary input (z = 0) using the spectrum of the Fourier-limited one SFl(ω,0) as
S(ω,0)=SFl(ω,0)exp[id2π(ωω0ω0)δ]
(14)
and then propagate it as described above; here δ=2corresponds to the linear chirp; d=±1 being the sign of the chirp. In Fig. 2 we present the calculated ionization degree for 3 µm Fourier-limited 15 fs long pulse and for longer pulses obtained from its spectrum with the Eq. (14).
Fig. 2 Ionization degree as a function of the propagation length for different chirps of the input pulse. The spectra of the chirped pulses are characterized with equation (S) where d=±1 and δ=2; sign of the chirp is controlled with sign of the parameter d.
In Fig. 2 one can see that it is possible to distinguish the Fourier-limited pulse from the chirped ones, as well as to measure CEP for the chirped pulses. It is also possible to directly access to the sign of the chirp of the capillary input as propagation in the capillary adds a negative chirp. When the input chirp is positive, propagation will reduce the chirp and lead to chirp compensation (minimum pulse duration and therefore maximum ionization) after a given distance. On the contrary, when the chirp of the input pulse is negative, the pulse will lengthen with propagation and the ionization degree will decrease with propagation.

Lrel1111=43LCEP
(15)

In Fig. 3 we present ionization degree calculated for the joint propagation of the fundamental and the SH.
Fig. 3 Ionization degree as a function of the propagation length for joint propagation of the fundamental and its weak second harmonic. Two upper (green online) curves describe the case when the second harmonic propagates in the mode EH11, two lower (blue online) ones correspond to its propagation in the mode EH12. Curves with and without circles present results for the sin- and cos-like pulses, correspondingly. The fundamental is 3mkm 30 fs long Fourier-limited pulse propagating in the mode EH11, its intensity is 3.7 1013 W/cm2; the second harmonic is 60 fs long pulse with 2.3 1010 W/cm2 intensity.
One can see that in this case the ionization degree does not oscillate in antiphase for the sin- and cos-like pulses. This is because the oscillation is mainly due to the relative phase variation (although we optimize the peak SH intensity to 0.6% of the fundamental intensity to emphasize the oscillation due to the CEP variation). Moreover, the lengths Lrel1111 and LCEP are close to each other (see Eq. (15)), which results in the beatings for the upper curves in Fig. 3. Note however that the asymmetry of the beatings is an heterodyne way to get the CEP and not only its absolute value and therefore to measure the exact value of the pulse CEP modulo 2π (and not this value modulo π).

If the SH propagates in the EH12 mode, the distance of the 2π relative phase variation is:
Lrel1112=LCEPu2u1224u2
(16)
substituting u12=5.52 from [13

13. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964). [CrossRef]

], we find that this distance differs essentially from LCEP:
Lrel1112=3.15LCEP
Thus for the lower curves in Fig. 3 the difference between sin- and cos-like pulses is more pronounced. Note, that experimental implementation of the propagation of the fundamental and the SH in different modes requires additional efforts.

For both cases of propagation of the SH, the difference between sin- and cos-like fundamental pulses is nevertheless nicely seen in the spatial spectra of the ionization degree presented in Figs. 4(a) and 4(b) after Fourier transforming the spatial evolution of the signal .
Fig. 4 Real part of the spatial spectrum of the ionization degree presented in Fig. 3 for propagation of the SH in the mode EH11 (a) and EH12 (b).
Indeed, in these figures the strong right peak almost does not depend on the CEP (it is just due to the dephasing between the two fields), but the phase of the weaker left peak is directly linked to the CEP of the input pulse. This phase can be extracted by filtering out the main peak and back Fourier transforming. Assuming that the phase variation of the latter peak can be measured experimentally until the modulation depth at this frequency is 1% we find the upper limits of the pulse duration, which CEP can be measured with this method presented in Table 1.

Currently another important criterion is the accuracy with which the CEP is measured as it impacts the measurements in metrology. As here the CEP measurement is performed by measuring the position of some fringes, it is possible to extract it with a high accuracy limited by the number of fringes that can be observed. We anticipate that this optical approach can improve the CEP control necessary for metrology and strong field physics.

4. Discussion and conclusions

Throughout this paper we do not consider the creation of the excited states of atoms or ions during the laser pulse. The fluorescence from such excited states might provide some background for the measurement. However, this background should be low because the excitation is less probable than the ionization in the tunneling regime. Namely, the excitation of the neutral atoms measured in [18

18. T. Nubbemeyer, K. Gorling, A. Saenz, U. Eichmann, and W. Sandner, “Strong-field tunneling without ionization,” Phys. Rev. Lett. 101(23), 233001 (2008). [CrossRef] [PubMed]

] is typically order of magnitude less probable than the ionization, and the excitation of the ions due to shakeup process is several orders of magnitude less probable [19

19. I. V. Litvinyuk, F. Légaré, P. W. Dooley, D. M. Villeneuve, P. B. Corkum, J. Zanghellini, A. Pegarkov, C. Fabian, and T. Brabec, “Shakeup excitation during optical tunnel ionization,” Phys. Rev. Lett. 94(3), 033003 (2005). [CrossRef] [PubMed]

]. Moreover, this background signal could be further suppressed if we record only the fluorescence after a given delay since fluorescence from the laser created excited states is much faster than the recombining one.

Our technique is based on the measurement of the fluorescence due to recombination of the photoelectrons and fluorescence of the states populated by these recombining electrons. Application of our method requires some limitations for the gas pressure. Its upper limit originates from the assumption that the gas dispersion and the pulse self action are negligible (if this is not the case, the method is still applicable, but the interpretation might be more complicated, see below). In the recent study [20

20. Th. Auguste, O. Gobert, C. F. Dutin, A. Dubrouil, E. Mevel, S. Petit, E. Constant, and D. Descamps, “Application of optical-field-ionization-induced spectral broadening in helium gas to the postcompression of high-energy femtosecond laser pulses,” J. Opt. Soc. Am. B 29(6), 1277–1286 (2012). [CrossRef]

] it was shown that the propagation of a laser pulse (with intensity much higher than the ones considered here) in a capillary with 1 mbar of helium at a distance of 40 cm does barely provides self action by broadening the pulse spectrum. So for the propagation over centimeters required in our method this limit corresponds to pressure of tens of mbars. The lower limit of the pressure comes from the requirement that the fluorescence pattern due to recombination is an image of the ionization pattern. This should imply that electron and ion recombine at the place where they were created and that the recombination distance should be less than the typical size of the fluorescence pattern. In fact recombination distances longer than the typical size of the ionization pattern are still allowable as the population of ions follows this pattern and wherever the electron comes recombination can only occur where ions where created; nevertheless signal coming from electron hitting the wall of the capillary should be avoided (it can be filtered with spectral filters) and to fulfill this criteria a short recombination distance is preferred. Experimentally, focusing a pulse in a cell with a 1 mbar pressure we can clearly see the fluorescence pattern tracing the beam shape near the focus. Note, that ionization probabilities of 10−4-10−6 found in our calculations provide enough photoelectrons to detect the signal for such pressures. Thus, there is a gap between the lower and the upper pressure limits, and the gas pressure of about 1-10 mbars appears to be the optimal one.

Thus, in this paper we have described an all optical setup suggested to measure the CEP of short pulses and we have shown that this measurement is possible even by considering a limited set of parameters. Further improvements are however possible by slight modifications of this approach. The number of oscillations of the ionization degree is limited with the pulse spreading which reduces the contrast of the oscillations; this number is given by Eq. (10) if the dispersion originates only from the propagation in a capillary. However, if the gas pressure is higher and the gas dispersion is comparable with the waveguide dispersion, they can provide zero group velocity. Practically this is hardly possible with the usual capillary because it requires too high gas pressure or very large capillary radius which provides too large inter-fringes distance LCEP. However, such propagation can be achieved in a photonic crystal wave-guide. Note, that in the case of higher gas pressure the pulse propagation can be studied via numerical approach [21

21. E. Lorin, S. Chelkowski, E. Zaoui, and A. Bandrauk, “Maxwell–Schrödinger–plasma (MASP) model for laser–molecule interactions: Towards an understanding of filamentation with intense ultrashort pulses,” Physica D 241(12), 1059–1071 (2012). [CrossRef]

].

In conclusion, we have described a new approach that can be used to fully characterize the field of an intense ultrashort pulse. This approach gives the value of the CEP with high accuracy, its sign and also the chirp of the pulse. It is well fitted to characterize few cycle pulses. Using weak second harmonic co-propagating in the capillary allows measuring CEP for almost twice longer pulses. This method is fully optical and can be adapted to several wavelength ranges or even improved by considering other guided geometry

Acknowledgments

We acknowledge financial supports from the CNRS (Pics n°PICS06038), the European community (Laserlab program Inrex and Eurolite), the ANR (Attowave project), the region Aquitaine (Nasa project), Russian Foundation for Basic Research (12-02-91059-NCNI-a, 12-02-00627-a), and the Dynasty Foundation.

References and links

1.

A. Baltuška, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421(6923), 611–615 (2003). [CrossRef] [PubMed]

2.

M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, and H. Takahashi, “Single-shot measurement of carrier-envelope phase changes by spectral interferometry,” Opt. Lett. 26(18), 1436–1438 (2001). [CrossRef] [PubMed]

3.

C. Grebing, S. Koke, B. Manschwetus, and G. Steinmeyer, “Performance comparison of interferometer topologies for carrier-envelope phase detection,” Appl. Phys. B 95(1), 81–84 (2009). [CrossRef]

4.

E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, “Attosecond control and measurement: lightwave electronics,” Science 317(5839), 769–775 (2007). [CrossRef] [PubMed]

5.

X. Chen, L. Canova, A. Malvache, A. Jullien, R. Lopez-Martens, C. Durfee, D. Papadopoulos, and F. Druon, “1-mJ, sub-5-fs carrier envelope phase-locked pulses,” Appl. Phys. B 99(1–2), 149–157 (2010). [CrossRef]

6.

M. Miranda, Th. Fordell, C. Arnold, A. L’Huillier, and H. Crespo, “Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges,” Opt. Express 20(1), 688–697 (2012). [CrossRef] [PubMed]

7.

S. Micheau, Zh. Chen, T. Morishita, A.-T. Le, and C. D. Lin, “Robust carrier-envelope phase retrieval of few-cycle laser pulses from high-energy photoelectron spectra in the above-threshold ionization of atoms,” J. Phys. At. Mol. Opt. Phys. 42(6), 065402 (2009). [CrossRef]

8.

R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Atomic transient recorder,” Nature 427(6977), 817–821 (2004). [CrossRef] [PubMed]

9.

G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. De Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414(6860), 182–184 (2001). [CrossRef] [PubMed]

10.

S. Chelkowski and A. D. Bandrauk, “Asymmetries in strong-field photoionization by few-cycle laser pulses: Kinetic-energy spectra and semiclassical explanation of the asymmetries of fast and slow electrons,” Phys. Rev. A 71(5), 053815 (2005). [CrossRef]

11.

T. Wittmann, B. Horvath, W. Helml, M. G. Schätzel, X. Gu, A. L. Cavalieri, G. G. Paulus, and R. Kienberger, “Single-shot carrier–envelope phase measurement of few-cycle laser pulses,” Nat. Phys. 5(5), 357–362 (2009). [CrossRef]

12.

T. Rathje, N. G. Johnson, M. Möller, F. Süßmann, D. Adolph, M. Kübel, R. Kienberger, M. F. Kling, G. G. Paulus, and A. M. Sayler, “Review of attosecond resolved measurement and control via carrier–envelope phase tagging with above-threshold ionization,” J. Phys. At. Mol. Opt. Phys. 45(7), 074003 (2012).

13.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964). [CrossRef]

14.

M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves (Nauka, 1990).

15.

E. A. Volkova, V. V. Gridchin, A. M. Popov, and O. V. Tikhonova, “Tunneling ionization of a hydrogen atom in short and ultrashort laser pulses,” J. Exp. Theor. Phys. 102(1), 40–52 (2006). [CrossRef]

16.

L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon Press, 1977).

17.

D. Bauer, “Emergence of classical orbits in few-cycle above-threshold ionization of atomic hydrogen,” Phys. Rev. Lett. 94(11), 113001 (2005). [CrossRef] [PubMed]

18.

T. Nubbemeyer, K. Gorling, A. Saenz, U. Eichmann, and W. Sandner, “Strong-field tunneling without ionization,” Phys. Rev. Lett. 101(23), 233001 (2008). [CrossRef] [PubMed]

19.

I. V. Litvinyuk, F. Légaré, P. W. Dooley, D. M. Villeneuve, P. B. Corkum, J. Zanghellini, A. Pegarkov, C. Fabian, and T. Brabec, “Shakeup excitation during optical tunnel ionization,” Phys. Rev. Lett. 94(3), 033003 (2005). [CrossRef] [PubMed]

20.

Th. Auguste, O. Gobert, C. F. Dutin, A. Dubrouil, E. Mevel, S. Petit, E. Constant, and D. Descamps, “Application of optical-field-ionization-induced spectral broadening in helium gas to the postcompression of high-energy femtosecond laser pulses,” J. Opt. Soc. Am. B 29(6), 1277–1286 (2012). [CrossRef]

21.

E. Lorin, S. Chelkowski, E. Zaoui, and A. Bandrauk, “Maxwell–Schrödinger–plasma (MASP) model for laser–molecule interactions: Towards an understanding of filamentation with intense ultrashort pulses,” Physica D 241(12), 1059–1071 (2012). [CrossRef]

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(320.0320) Ultrafast optics : Ultrafast optics
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Ultrafast Optics

History
Original Manuscript: November 12, 2013
Revised Manuscript: January 8, 2014
Manuscript Accepted: March 3, 2014
Published: March 10, 2014

Citation
V. V. Strelkov, E. Mével, and E. Constant, "Short pulse carrier-envelope phase absolute single-shot measurement by photoionization of gases with a guided laser beam," Opt. Express 22, 6239-6248 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6239


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Baltuška, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421(6923), 611–615 (2003). [CrossRef] [PubMed]
  2. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, H. Takahashi, “Single-shot measurement of carrier-envelope phase changes by spectral interferometry,” Opt. Lett. 26(18), 1436–1438 (2001). [CrossRef] [PubMed]
  3. C. Grebing, S. Koke, B. Manschwetus, G. Steinmeyer, “Performance comparison of interferometer topologies for carrier-envelope phase detection,” Appl. Phys. B 95(1), 81–84 (2009). [CrossRef]
  4. E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, F. Krausz, “Attosecond control and measurement: lightwave electronics,” Science 317(5839), 769–775 (2007). [CrossRef] [PubMed]
  5. X. Chen, L. Canova, A. Malvache, A. Jullien, R. Lopez-Martens, C. Durfee, D. Papadopoulos, F. Druon, “1-mJ, sub-5-fs carrier envelope phase-locked pulses,” Appl. Phys. B 99(1–2), 149–157 (2010). [CrossRef]
  6. M. Miranda, Th. Fordell, C. Arnold, A. L’Huillier, H. Crespo, “Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges,” Opt. Express 20(1), 688–697 (2012). [CrossRef] [PubMed]
  7. S. Micheau, Zh. Chen, T. Morishita, A.-T. Le, C. D. Lin, “Robust carrier-envelope phase retrieval of few-cycle laser pulses from high-energy photoelectron spectra in the above-threshold ionization of atoms,” J. Phys. At. Mol. Opt. Phys. 42(6), 065402 (2009). [CrossRef]
  8. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, “Atomic transient recorder,” Nature 427(6977), 817–821 (2004). [CrossRef] [PubMed]
  9. G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, S. De Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414(6860), 182–184 (2001). [CrossRef] [PubMed]
  10. S. Chelkowski, A. D. Bandrauk, “Asymmetries in strong-field photoionization by few-cycle laser pulses: Kinetic-energy spectra and semiclassical explanation of the asymmetries of fast and slow electrons,” Phys. Rev. A 71(5), 053815 (2005). [CrossRef]
  11. T. Wittmann, B. Horvath, W. Helml, M. G. Schätzel, X. Gu, A. L. Cavalieri, G. G. Paulus, R. Kienberger, “Single-shot carrier–envelope phase measurement of few-cycle laser pulses,” Nat. Phys. 5(5), 357–362 (2009). [CrossRef]
  12. T. Rathje, N. G. Johnson, M. Möller, F. Süßmann, D. Adolph, M. Kübel, R. Kienberger, M. F. Kling, G. G. Paulus, A. M. Sayler, “Review of attosecond resolved measurement and control via carrier–envelope phase tagging with above-threshold ionization,” J. Phys. At. Mol. Opt. Phys. 45(7), 074003 (2012).
  13. E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964). [CrossRef]
  14. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves (Nauka, 1990).
  15. E. A. Volkova, V. V. Gridchin, A. M. Popov, O. V. Tikhonova, “Tunneling ionization of a hydrogen atom in short and ultrashort laser pulses,” J. Exp. Theor. Phys. 102(1), 40–52 (2006). [CrossRef]
  16. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon Press, 1977).
  17. D. Bauer, “Emergence of classical orbits in few-cycle above-threshold ionization of atomic hydrogen,” Phys. Rev. Lett. 94(11), 113001 (2005). [CrossRef] [PubMed]
  18. T. Nubbemeyer, K. Gorling, A. Saenz, U. Eichmann, W. Sandner, “Strong-field tunneling without ionization,” Phys. Rev. Lett. 101(23), 233001 (2008). [CrossRef] [PubMed]
  19. I. V. Litvinyuk, F. Légaré, P. W. Dooley, D. M. Villeneuve, P. B. Corkum, J. Zanghellini, A. Pegarkov, C. Fabian, T. Brabec, “Shakeup excitation during optical tunnel ionization,” Phys. Rev. Lett. 94(3), 033003 (2005). [CrossRef] [PubMed]
  20. Th. Auguste, O. Gobert, C. F. Dutin, A. Dubrouil, E. Mevel, S. Petit, E. Constant, D. Descamps, “Application of optical-field-ionization-induced spectral broadening in helium gas to the postcompression of high-energy femtosecond laser pulses,” J. Opt. Soc. Am. B 29(6), 1277–1286 (2012). [CrossRef]
  21. E. Lorin, S. Chelkowski, E. Zaoui, A. Bandrauk, “Maxwell–Schrödinger–plasma (MASP) model for laser–molecule interactions: Towards an understanding of filamentation with intense ultrashort pulses,” Physica D 241(12), 1059–1071 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited