OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10544–10549
« Show journal navigation

First demonstration of a 2μm few-mode TDFA for mode division multiplexing

Y. Jung, P. C. Shardlow, M. Belal, Z. Li, A. M. Heidt, J. M. O. Daniel, D. Jain, J. K. Sahu, W. A. Clarkson, B. Corbett, J. O’Callaghan, S. U. Alam, and D. J. Richardson  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10544-10549 (2014)
http://dx.doi.org/10.1364/OE.22.010544


View Full Text Article

Acrobat PDF (1242 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first demonstration of an inline few-mode thulium doped fiber amplifier (TDFA) operating at 2μm for mode division multiplexed transmission. Similar gain and noise figure performance for both the LP01 and LP11 modes are obtained in a cladding pumped 2-mode group TDFA. A maximum gain of 18.3dB was measured at 1970nm with a 3dB gain bandwidth of 75nm while the average noise figure was measured to be between 7 and 8dB for wavelengths longer than 1970nm.

© 2014 Optical Society of America

1. Introduction

Space division multiplexing (SDM) [1

1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013). [CrossRef]

4

4. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Lightwave Technol. 30(4), 521–531 (2012). [CrossRef]

] has attracted considerable attention amongst the high-capacity fiber-optic communications community as a radical approach to increase the data capacity by employing multiple distinguishable spatial information channels through the same fiber. Indeed space is the only remaining physical dimensions yet to be explored in the struggle to accommodate the ever increasing growth in demand for data capacity at an economically viable cost-per-bit: all other signaling dimensions (i.e. wavelength, polarization, phase and amplitude) are already close to optimally exploited in current single mode fiber (SMF) based transmission systems. There are two basic strategies for achieving multiple spatial channels within a single fiber: 1) multicore fiber whereby multiple cores are incorporated in a single fiber cladding, and 2) multimode fiber that utilizes multiple spatial modes in a large core fiber. Both of these approaches are being intensively investigated around the globe and a 10-fold increase in overall fiber capacity has already been achieved in little more than 2 years [5

5. V. A. J. M. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. Grüner-Nielsen, Y. Sun, D. J. Richardson, S. U. Alam, F. Poletti, J. K. Sahu, A. Dhar, A. M. J. Koonen, B. Corbett, R. Winfield, A. D. Ellis, and H. de Waardt, “73.7Tb/s (96x3x256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” Opt. Express 20(26), B428–B438 (2012). [CrossRef]

7

7. E. Ip, M. Li, Y. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, “146λx6x19-Gbaud wavelength and mode-division multiplexed transmission over 10x50km spans of few-mode fiber with a gain-equalized few-mode EDFA,” in Optical Fiber Communication Conference 2013, paper PDP5A.2.

]. However the nonlinearity of these solid-core silica fibers [3

3. I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications VIB Systems and Networks, Sixth Edition (Elsevier, 2013).

, 8

8. S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: generalisation of the Manakov equations,” J. Lightwave Technol. 31(3), 398–406 (2013). [CrossRef]

] still remains at a similar level to that of SMF and this will ultimately limit the maximum power that can be used. Moreover, the gain bandwidth of the erbium doped fiber amplifier (EDFA) will further constrain the overall maximum achievable per-fiber capacity.

In recent years, there has been emerging research activity looking at overcoming the aforementioned limitations by moving to hollow core photonic bandgap transmission fiber (HC-PBGF) which offer the potential for ultralow nonlinearity (three orders of magnitude less), lower loss (~0.1dB/km theoretical limit) and lower latency (1.45 times faster) than conventional silica glass fibers [9

9. J. K. Lyngsø, B. J. Mangan, C. Jakobsen, and P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 μm,” Opt. Express 17(26), 23468–23473 (2009). [CrossRef]

, 10

10. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013). [CrossRef]

]. Furthermore, the anticipated low loss spectral window of HC-PBGFs is around 2μm, which overlaps with the gain bandwidth of the thulium doped fiber amplifier (TDFA) [11

11. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013). [CrossRef] [PubMed]

, 12

12. Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013). [CrossRef]

], which offers the broadest gain bandwidth (extending potentially from 1700 to 2100nm) amongst all rare earth doped fiber amplifiers. To this end, in [13

13. M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).

, 14

14. N. Mac Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. Wooler, S. Alam, F. Poletti, M. Petrovich, A. Heidt, N. Wheeler, N. Baddela, E. R. Numkam Fokoua, I. Giles, D. Giles, R. Phelan, J. O'Carroll, B. Kelly, B. Corbett, D. Murphy, A. D. Ellis, D. J. Richardson, and F. Garcia Gunning, “WDM transmission at 2μm over low-loss hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference 2013, paper OW1I.6. [CrossRef]

], the first 2μm data transmission over a HC-PBGF was accomplished for both single and wavelength division multiplexed (WDM) data channels (4 channels) using an in-line single-mode TDFA. This transmission experiment demonstrated the technical viability of using a new broadband optical communication window around 2μm. Moreover, low loss HC-PBGFs are inherently multimode, raising the intriguing prospect of exploiting SDM to further enhance fiber capacity. Indeed the first experiments on three mode transmission at 1550nm in such fibers have now been reported [15

15. V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014). [CrossRef]

]. To maximize the overall capacity of HC-PBGF then one needs to be able to perform SDM at 2μm resulting in a need for both passive and active multimode fiber devices operating at this wavelength.

In this paper we present the first demonstration of a multimode (two mode-group, namely LP01 and LP11) TDFA for SDM transmission around 2μm. Employing a 2μm-phase plate based mode multiplexer/demultiplexer, amplifier gain was measured under constant saturation conditions by saturating the amplifier with one strong signal and measuring the gain experienced by a weaker probe. Our cladding pumped TM-TDFA exhibits similar gain/noise figure performance for both the LP01 and LP11 modes. The maximum gain was measured to be ~18.3dB at 1970nm with a 3dB gain bandwidth of 75nm and the average noise figure was measured to be around 7-8dB for wavelengths longer than 1970nm. There is considerable scope to improve both the gain and noise performance of the device as new and better amplifier components become available.

2. Experimental setup for the TM-TDFA

3. Gain and noise figure performance of the TM-TDFA

4. Conclusion

A two-mode group thulium-doped fiber amplifier has been successfully demonstrated for the first time and exhibits relatively good performance. The amplifier should allow for mode division multiplexed data transmission in a potential new transmission window around 2μm. Similar gain and noise figure performance were obtained for both spatial modes (LP01 and LP11) under cladding pumped operation. A maximum signal gain of about 18.3dB was measured at 1970nm for the LP11 mode with a 3dB gain bandwidth of 75nm while the average noise figure was measured to be between 7 and 8dB for wavelengths longer than 1970nm. The amplifier performance can be improved by increasing the pump power, improving the pumping configuration, reducing the core to inner cladding area ratio and by improvements in a variety of passive 2μm optical components such as optical isolators and WDM couplers. We consider this to be an important step in extending SDM transmission to the new 2μm transmission window providing new options for fiber capacity scaling.

Acknowledgments

The authors would like to thank Eblana Photonics for providing the 2μm discrete-mode laser diodes. This work was supported in part by the European Communities 7th Framework Programme under grant agreement 258033 (MODE-GAP) and 287732 (ISLA).

References and links

1.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013). [CrossRef]

2.

T. Morioka, Y. Awaji, R. Ryf, P. J. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012). [CrossRef]

3.

I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications VIB Systems and Networks, Sixth Edition (Elsevier, 2013).

4.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Lightwave Technol. 30(4), 521–531 (2012). [CrossRef]

5.

V. A. J. M. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. Grüner-Nielsen, Y. Sun, D. J. Richardson, S. U. Alam, F. Poletti, J. K. Sahu, A. Dhar, A. M. J. Koonen, B. Corbett, R. Winfield, A. D. Ellis, and H. de Waardt, “73.7Tb/s (96x3x256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” Opt. Express 20(26), B428–B438 (2012). [CrossRef]

6.

S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, and M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express 20(27), 28398–28408 (2012). [CrossRef] [PubMed]

7.

E. Ip, M. Li, Y. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, “146λx6x19-Gbaud wavelength and mode-division multiplexed transmission over 10x50km spans of few-mode fiber with a gain-equalized few-mode EDFA,” in Optical Fiber Communication Conference 2013, paper PDP5A.2.

8.

S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: generalisation of the Manakov equations,” J. Lightwave Technol. 31(3), 398–406 (2013). [CrossRef]

9.

J. K. Lyngsø, B. J. Mangan, C. Jakobsen, and P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 μm,” Opt. Express 17(26), 23468–23473 (2009). [CrossRef]

10.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013). [CrossRef]

11.

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013). [CrossRef] [PubMed]

12.

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013). [CrossRef]

13.

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).

14.

N. Mac Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. Wooler, S. Alam, F. Poletti, M. Petrovich, A. Heidt, N. Wheeler, N. Baddela, E. R. Numkam Fokoua, I. Giles, D. Giles, R. Phelan, J. O'Carroll, B. Kelly, B. Corbett, D. Murphy, A. D. Ellis, D. J. Richardson, and F. Garcia Gunning, “WDM transmission at 2μm over low-loss hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference 2013, paper OW1I.6. [CrossRef]

15.

V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014). [CrossRef]

16.

D. M. Baney and J. Stimple, “WDM EDFA gain characterization with a reduced set of saturating channels,” IEEE Photon. Technol. Lett. 8(12), 1615–1617 (1996). [CrossRef]

17.

Y. Jung, Q. Kang, V. A. J. M. Sleiffer, B. Inan, M. Kuschnerov, V. Veljanovski, B. Corbett, R. Winfield, Z. Li, P. S. Teh, A. Dhar, J. Sahu, F. Poletti, S.-U. Alam, and D. J. Richardson, “Three mode Er3+ ring-doped fiber amplifier for mode-division multiplexed transmission,” Opt. Express 21(8), 10383–10392 (2013). [CrossRef] [PubMed]

18.

K. S. Abedin, T. F. Taunay, M. Fishteyn, D. J. DiGiovanni, V. R. Supradeepa, J. M. Fini, M. F. Yan, B. Zhu, E. M. Monberg, and F. V. Dimarcello, “Cladding-pumped erbium-doped multicore fiber amplifier,” Opt. Express 20(18), 20191–20200 (2012). [CrossRef] [PubMed]

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators

ToC Category:
Optical Communications

History
Original Manuscript: February 12, 2014
Revised Manuscript: April 11, 2014
Manuscript Accepted: April 17, 2014
Published: April 24, 2014

Citation
Y. Jung, P. C. Shardlow, M. Belal, Z. Li, A. M. Heidt, J. M. O. Daniel, D. Jain, J. K. Sahu, W. A. Clarkson, B. Corbett, J. O’Callaghan, S. U. Alam, and D. J. Richardson, "First demonstration of a 2μm few-mode TDFA for mode division multiplexing," Opt. Express 22, 10544-10549 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10544


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Richardson, J. M. Fini, L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013). [CrossRef]
  2. T. Morioka, Y. Awaji, R. Ryf, P. J. Winzer, D. Richardson, F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), s31–s42 (2012). [CrossRef]
  3. I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications VIB Systems and Networks, Sixth Edition (Elsevier, 2013).
  4. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Lightwave Technol. 30(4), 521–531 (2012). [CrossRef]
  5. V. A. J. M. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. Grüner-Nielsen, Y. Sun, D. J. Richardson, S. U. Alam, F. Poletti, J. K. Sahu, A. Dhar, A. M. J. Koonen, B. Corbett, R. Winfield, A. D. Ellis, H. de Waardt, “73.7Tb/s (96x3x256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA,” Opt. Express 20(26), B428–B438 (2012). [CrossRef]
  6. S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express 20(27), 28398–28408 (2012). [CrossRef] [PubMed]
  7. E. Ip, M. Li, Y. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, “146λx6x19-Gbaud wavelength and mode-division multiplexed transmission over 10x50km spans of few-mode fiber with a gain-equalized few-mode EDFA,” in Optical Fiber Communication Conference 2013, paper PDP5A.2.
  8. S. Mumtaz, R.-J. Essiambre, G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: generalisation of the Manakov equations,” J. Lightwave Technol. 31(3), 398–406 (2013). [CrossRef]
  9. J. K. Lyngsø, B. J. Mangan, C. Jakobsen, P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 μm,” Opt. Express 17(26), 23468–23473 (2009). [CrossRef]
  10. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, D. J. Richardson, “Towards high-capacity fibre optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013). [CrossRef]
  11. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013). [CrossRef] [PubMed]
  12. Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013). [CrossRef]
  13. M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Garcia Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
  14. N. Mac Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. Wooler, S. Alam, F. Poletti, M. Petrovich, A. Heidt, N. Wheeler, N. Baddela, E. R. Numkam Fokoua, I. Giles, D. Giles, R. Phelan, J. O'Carroll, B. Kelly, B. Corbett, D. Murphy, A. D. Ellis, D. J. Richardson, and F. Garcia Gunning, “WDM transmission at 2μm over low-loss hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference 2013, paper OW1I.6. [CrossRef]
  15. V. Sleiffer, Y. Jung, N. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. Hayes, N. Wheeler, E. Fokoua, J. Wooler, D. Gray, N. Wong, F. Parmigiani, S. Alam, M. Petrovich, F. Poletti, D. J. Richardson, H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014). [CrossRef]
  16. D. M. Baney, J. Stimple, “WDM EDFA gain characterization with a reduced set of saturating channels,” IEEE Photon. Technol. Lett. 8(12), 1615–1617 (1996). [CrossRef]
  17. Y. Jung, Q. Kang, V. A. J. M. Sleiffer, B. Inan, M. Kuschnerov, V. Veljanovski, B. Corbett, R. Winfield, Z. Li, P. S. Teh, A. Dhar, J. Sahu, F. Poletti, S.-U. Alam, D. J. Richardson, “Three mode Er3+ ring-doped fiber amplifier for mode-division multiplexed transmission,” Opt. Express 21(8), 10383–10392 (2013). [CrossRef] [PubMed]
  18. K. S. Abedin, T. F. Taunay, M. Fishteyn, D. J. DiGiovanni, V. R. Supradeepa, J. M. Fini, M. F. Yan, B. Zhu, E. M. Monberg, F. V. Dimarcello, “Cladding-pumped erbium-doped multicore fiber amplifier,” Opt. Express 20(18), 20191–20200 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited