OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10825–10830
« Show journal navigation

Optical detection and modulation at 2µm-2.5µm in silicon

D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 10825-10830 (2014)
http://dx.doi.org/10.1364/OE.22.010825


View Full Text Article

Acrobat PDF (1079 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently the 2μm wavelength region has emerged as an exciting prospect for the next generation of telecommunications. In this paper we experimentally characterise silicon based plasma dispersion effect optical modulation and defect based photodetection in the 2-2.5μm wavelength range. It is shown that the effectiveness of the plasma dispersion effect is dramatically increased in this wavelength window as compared to the traditional telecommunications wavelengths of 1.3μm and 1.55μm. Experimental results from the defect based photodetectors show that detection is achieved in the 2-2.5μm wavelength range, however the responsivity is reduced as the wavelength is increased away from 1.55μm.

© 2014 Optical Society of America

1. Introduction

2. Photodetection

The photodetectors used in this study were modified from a commercial VOA originally made available by Kotura Inc. The fabrication details and performance of these devices when functioning as either VOAs or tap detectors for use at 1550nm may be found elsewhere [28

28. D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16(21), 16754–16765 (2008). [CrossRef] [PubMed]

, 29

29. J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234–235 (2010). [CrossRef]

]. Following the processing to form the VOA (including metal/dielectric deposition) three devices were implanted with boron ions to a dose of 1x1012, 5x1012 or 1x1013cm−2; at an energy of 4MeV. All devices were subsequently annealed at 200°C for 5 minutes in a nitrogen ambient. The detectors were characterised around 1.55μm and between 2μm and 2.5μm. At 1.55μm light from a tunable laser is passed to a collimating lens via an optical fibre. The collimated light is then passed through free-space to a second lens which focuses the light on to the input facet of the optical waveguide. In the case of the 2–2.5μm wavelengths, collimated light is passed directly from the laser to a lens which focuses the light on to input waveguide. At the output side of the detector chip the light is collected from the waveguide facet using a further lens which collimates the light, which is then passed through free-space to a commercial detector. The electrode pads of the devices were contacted using probes that were connected to a picoammeter, allowing application of the reverse bias and measurement of the resultant photocurrent. A schematic of the experimental set-up together with the device layout is shown in Fig. 1 (a).
Fig. 1 Schematic of setup with device layout (a). Responsivity versus wavelength for the detector with boron implantation dose of (b) 1x1012.cm−2, (c) 5x1012.cm−2, and (d) 1x1013.cm−2.

The length of the entire fabricated chip was 17mm, and comprised of a ~5mm photodetector section positioned in the centre with ~6mm of passive waveguide on both the input and output sides. The ion implantation process which was used to create the defects was not masked and therefore the entire length of the waveguide was implanted. This means that the optical power reaching the detector is subject to the optical losses in the input section as well as coupling and lens losses. The lens loss was characterised separately and the coupling loss estimated to be approximately 1.6dB per facet. The coupling loss is dominated by reflection losses since the waveguide cross section is relatively large for these devices. The propagation loss at each wavelength was then calculated from the measurements of the input and output powers and the losses in the system. The power at the input of the photodetector section was then calculated in each case in order to obtain the detector responsivity.

Figure 1(b), 1(c) and 1(d) show the optical detection and propagation losses in the wavelength range of 1.53-1.61μm and 2–2.5μm for the three photodetectors with different implantation doses. The difference in trend in propagation loss between samples is likely to be due to differences in the implantation conditions [26

26. H. K. Fan and A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30(8), 1127–1134 (1959). [CrossRef]

]. For the best performing device (i.e., that implanted to a dose of 5x1012cm−2), the responsivity at 2500nm is reduced by a factor of 10 compared to 1550nm; while for 2000nm the responsivity is approximately 80% of that for 1550nm. The absolute values of responsivity are modest, as one would expect for such large waveguides (4.7μm height, 3.5μm width and 3.1μm slab height), with the results being consistent with those reported by Doylend et al. [29

29. J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234–235 (2010). [CrossRef]

]. These results are in fact extremely encouraging and suggest that small cross-section detectors (currently being designed by the authors) should provide responsivities >1A/W, and bandwidths of 10Gbps when operated in the avalanche regime [27

27. J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, and A. P. Knights, “10 Gbps silicon waveguide-integrated infrared avalanche photodiode,” Opt. Express 21(17), 19530–19537 (2013). [CrossRef] [PubMed]

]. The trend for responsivity as a function of implantation dose for these types of detectors is dominated by a trade-off between increasing absorption with increasing dose (and defect concentration), and a degradation in diode electrical characteristics as the dose is increased (a result of carrier recombination). The absolute values of responsivity are however dependent upon the waveguide geometry and ion species, energy and dose. Quantitative discussion of these issues was provided in [16

16. D. F. Logan, P. E. Jessop, and A. P. Knights, “Modeling defect enhanced detection at 1550 nm in integrated silicon waveguide photodetectors,” J. Lightwave Technol. 27(7), 930–937 (2009). [CrossRef]

]. It would appear that for the current detector geometries and for the ion species chosen (i.e. boron) the range of 1012 to 1013cm−2 would bracket the optimum dose. We show evidence of this conclusion in the fact that of our three doses, 5x1012cm−2 produces the greatest amount of responsivity (although we cannot be sure that this is the optimum dose). High speed operation of these photodetectors is not expected due to the large waveguides used. Scaling this type of device to sub-micrometer size waveguides can yield speeds of 10Gbps as shown in [27

27. J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, and A. P. Knights, “10 Gbps silicon waveguide-integrated infrared avalanche photodiode,” Opt. Express 21(17), 19530–19537 (2013). [CrossRef] [PubMed]

].

3. Modulation

The optical output was measured for varying forward bias voltages and injection currents, using the same experimental setup as was used for the photodetector measurements. The optical transmission is plotted against current in Fig. 2 for the four different wavelengths.
Fig. 2 Normalised transmission versus drive current at 1.31µm, 1.55µm, 2µm and 2.5µm.
The results are normalised to the transmission with no bias applied. The reduction in transmission is due to the presence of injected free carriers in the waveguide. The slight ripple in the curves is due to the waveguide acting as a Fabry-Perot cavity and changes in the refractive index due to the injected carriers. Ideally we would compare our experimental results with the theoretical analysis of [22

22. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electro-refraction and electro-absorption modulation predictions for silicon over the 1-14 um wavelength range,” IEEE Journal of Photonics 3(6), 1171–1180 (2011). [CrossRef]

]. However, calculations based on the analysis suggest that the free carrier densities achieved over the injection currents used in this work are approximately 1x1017cm−3, which is out of the range of the minimum densities used to develop the expressions in [22

22. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electro-refraction and electro-absorption modulation predictions for silicon over the 1-14 um wavelength range,” IEEE Journal of Photonics 3(6), 1171–1180 (2011). [CrossRef]

] (3.2x1017cm−3 and 5x1017cm−3 for electrons and holes, respectively). According to the theory, with an injected electron and hole density of 1x1017cm−3 the attenuation in dB achieved at 1.55μm, 2μm and 2.5μm is 1.7, 2.9 and 3.7 times more than the attenuation at 1.3μm, whereas according to the experimental results of Fig. 2 it is 2.2, 4.5 and 6.3 times more, respectively. Thus we cannot be confident that fitting of the attenuation curves of Fig. 2 with this theory will provide a meaningful interpretation of the results for all four wavelengths.

The curves of Fig. 2 do, however confirm that as the wavelength is increased the plasma dispersion effect becomes more effective. These results suggest that plasma dispersion effect modulators used for the 2μm wavelength window could be much more compact and/or require a much lower drive voltage (and therefore lower power consumption) than at the traditional NIR telecommunication wavelength bands. The speed of the device used in this analysis is slow due to the large size of the waveguide and the use of carrier injection [28

28. D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16(21), 16754–16765 (2008). [CrossRef] [PubMed]

]. By scaling to a smaller waveguide and by using carrier depletion or accumulation techniques, operation at speeds up to 40Gbit/s and beyond can be expected as shown in the NIR [17

17. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, D. J. Thomson, L. Ke, P. Wilson, S.-W. Chen, and S. H. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013). [CrossRef]

].

4. Conclusion

Silicon photonic based defect photodetectors and a plasma dispersion effect modulator have been characterised in the 2–2.5μm wavelength band. For the detectors it is shown that operation is possible in this wavelength range, however, the responsivity is reduced as compared to 1.55μm. The results from the optical modulator shows that a large increase in the effectiveness of the plasma dispersion effect is achieved as the wavelength is increased from the traditional telecommunication windows of 1.3μm and 1.55μm to the 2–2.5μm range. These encouraging results show that silicon photonics has bright prospects for the implementation of integrated photonic circuits in this newly proposed short-wave band for extended telecommunications applications.

Acknowledgments

The research leading to these results has received funding from the EPSRC in the UK to support the MIGRATION and Silicon Photonics for Future Systems projects; and NSERC in Canada. Goran Mashanovich acknowledges support from the Royal Society through his Royal Society Research Fellowship. We thank members of the Kotura silicon photonics team for supplying the VOA chips.

References and links

1.

A. Narasimha, S. Abdalla, C. Bradbury, A. Clark, J. Clymore, J. Coyne, A. Dahl, S. Gloeckner, A. Gruenberg, D. Guckenberger, S. Gutierrez, M. Harrison, D. Kucharski, K. Leap, R. LeBlanc, Y. Liang, M. Mack, D. Martinez, G. Masini, A. Mekis, R. Menigoz, C. Ogden, M. Peterson, T. Pinguet, J. Redman, J. Rodriguez, S. Sahni, M. Sharp, T. J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, W. Xu, K. Yokoyama, and P. De Dobbelaere, “An ultra low power CMOS photonics technology platform for H/S optoelectronic transceivers at less than $1 per Gbps,” Proceedings of Optical Fibre Conference 2010 OMV4, 1–3 (2010). [CrossRef]

2.

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E.-J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011). [CrossRef] [PubMed]

3.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013). [CrossRef]

4.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Fung, Y. M. Chen, and H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37(7), 1217–1219 (2012). [CrossRef] [PubMed]

5.

M. Nedeljkovic, A. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, D. J. Thomson, F. Y. Gardes, H. M. H. Chong, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013). [CrossRef]

6.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Z. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014). [CrossRef]

7.

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21(10), 11659–11669 (2013). [CrossRef] [PubMed]

8.

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39(6), 1406–1409 (2014). [CrossRef] [PubMed]

9.

M. A. Van Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, and W. M. J. Green, “Demonstration of electrooptic modulation at 2165nm using a silicon Mach-Zehnder interferometer,” Opt. Express 20(27), 28009–28016 (2012). [CrossRef] [PubMed]

10.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010). [CrossRef]

11.

http://modegap.eu

12.

http://www.orc.soton.ac.uk/PHH

13.

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J.-M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012). [CrossRef] [PubMed]

14.

Z. Sheng, L. Liu, J. Brouckaert, S. He, and D. Van Thourhout, “InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides,” Opt. Express 18(2), 1756–1761 (2010). [CrossRef] [PubMed]

15.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. Xu, “High responsivity graphene/silicon heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013). [CrossRef]

16.

D. F. Logan, P. E. Jessop, and A. P. Knights, “Modeling defect enhanced detection at 1550 nm in integrated silicon waveguide photodetectors,” J. Lightwave Technol. 27(7), 930–937 (2009). [CrossRef]

17.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, D. J. Thomson, L. Ke, P. Wilson, S.-W. Chen, and S. H. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013). [CrossRef]

18.

Y. Tang, J. D. Peters, and J. E. Bowers, “Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission,” Opt. Express 20(10), 11529–11535 (2012). [CrossRef] [PubMed]

19.

D. Feng, S. Liao, H. Liang, J. Fong, B. Bijlani, R. Shafiiha, B. J. Luff, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide,” Opt. Express 20(20), 22224–22232 (2012). [CrossRef] [PubMed]

20.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011). [CrossRef] [PubMed]

21.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011). [CrossRef] [PubMed]

22.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electro-refraction and electro-absorption modulation predictions for silicon over the 1-14 um wavelength range,” IEEE Journal of Photonics 3(6), 1171–1180 (2011). [CrossRef]

23.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007). [CrossRef]

24.

Y. Liu, C. W. Chow, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 18(17), 1882–1884 (2006). [CrossRef]

25.

B. Souhan, C. P. Chen, R. R. Grote, J. B. Driscoll, N. Ophir, K. Bergman, and R. M. Osgood, “Error-free operation of an all-silicon waveguide photodiode at 1.9 μm,” IEEE Photon. Technol. Lett. 25(21), 2031–2034 (2013). [CrossRef]

26.

H. K. Fan and A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30(8), 1127–1134 (1959). [CrossRef]

27.

J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, and A. P. Knights, “10 Gbps silicon waveguide-integrated infrared avalanche photodiode,” Opt. Express 21(17), 19530–19537 (2013). [CrossRef] [PubMed]

28.

D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16(21), 16754–16765 (2008). [CrossRef] [PubMed]

29.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234–235 (2010). [CrossRef]

30.

http://www.mellanox.com/

OCIS Codes
(040.5160) Detectors : Photodetectors
(060.4080) Fiber optics and optical communications : Modulation
(130.4110) Integrated optics : Modulators

ToC Category:
Optical Devices

History
Original Manuscript: March 26, 2014
Revised Manuscript: April 14, 2014
Manuscript Accepted: April 16, 2014
Published: April 28, 2014

Citation
D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, "Optical detection and modulation at 2µm-2.5µm in silicon," Opt. Express 22, 10825-10830 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-10825


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Narasimha, S. Abdalla, C. Bradbury, A. Clark, J. Clymore, J. Coyne, A. Dahl, S. Gloeckner, A. Gruenberg, D. Guckenberger, S. Gutierrez, M. Harrison, D. Kucharski, K. Leap, R. LeBlanc, Y. Liang, M. Mack, D. Martinez, G. Masini, A. Mekis, R. Menigoz, C. Ogden, M. Peterson, T. Pinguet, J. Redman, J. Rodriguez, S. Sahni, M. Sharp, T. J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, W. Xu, K. Yokoyama, and P. De Dobbelaere, “An ultra low power CMOS photonics technology platform for H/S optoelectronic transceivers at less than $1 per Gbps,” Proceedings of Optical Fibre Conference 2010 OMV4, 1–3 (2010). [CrossRef]
  2. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E.-J. Teo, Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011). [CrossRef] [PubMed]
  3. R. Shankar, I. Bulu, M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013). [CrossRef]
  4. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Fung, Y. M. Chen, H. K. Tsang, “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Opt. Lett. 37(7), 1217–1219 (2012). [CrossRef] [PubMed]
  5. M. Nedeljkovic, A. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, D. J. Thomson, F. Y. Gardes, H. M. H. Chong, G. T. Reed, G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013). [CrossRef]
  6. G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Z. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, W. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201511 (2014). [CrossRef]
  7. M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, G. Roelkens, “Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express 21(10), 11659–11669 (2013). [CrossRef] [PubMed]
  8. Y. Hu, T. Li, D. J. Thomson, X. Chen, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, G. T. Reed, G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39(6), 1406–1409 (2014). [CrossRef] [PubMed]
  9. M. A. Van Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, W. M. J. Green, “Demonstration of electrooptic modulation at 2165nm using a silicon Mach-Zehnder interferometer,” Opt. Express 20(27), 28009–28016 (2012). [CrossRef] [PubMed]
  10. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010). [CrossRef]
  11. http://modegap.eu
  12. http://www.orc.soton.ac.uk/PHH
  13. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, J.-M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012). [CrossRef] [PubMed]
  14. Z. Sheng, L. Liu, J. Brouckaert, S. He, D. Van Thourhout, “InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides,” Opt. Express 18(2), 1756–1761 (2010). [CrossRef] [PubMed]
  15. X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J. Xu, “High responsivity graphene/silicon heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013). [CrossRef]
  16. D. F. Logan, P. E. Jessop, A. P. Knights, “Modeling defect enhanced detection at 1550 nm in integrated silicon waveguide photodetectors,” J. Lightwave Technol. 27(7), 930–937 (2009). [CrossRef]
  17. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, D. J. Thomson, L. Ke, P. Wilson, S.-W. Chen, S. H. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 0(0), 1–18 (2013). [CrossRef]
  18. Y. Tang, J. D. Peters, J. E. Bowers, “Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission,” Opt. Express 20(10), 11529–11535 (2012). [CrossRef] [PubMed]
  19. D. Feng, S. Liao, H. Liang, J. Fong, B. Bijlani, R. Shafiiha, B. J. Luff, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, M. Asghari, “High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide,” Opt. Express 20(20), 22224–22232 (2012). [CrossRef] [PubMed]
  20. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011). [CrossRef] [PubMed]
  21. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011). [CrossRef] [PubMed]
  22. M. Nedeljkovic, R. Soref, G. Z. Mashanovich, “Free-carrier electro-refraction and electro-absorption modulation predictions for silicon over the 1-14 um wavelength range,” IEEE Journal of Photonics 3(6), 1171–1180 (2011). [CrossRef]
  23. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007). [CrossRef]
  24. Y. Liu, C. W. Chow, W. Y. Cheung, H. K. Tsang, “In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 18(17), 1882–1884 (2006). [CrossRef]
  25. B. Souhan, C. P. Chen, R. R. Grote, J. B. Driscoll, N. Ophir, K. Bergman, R. M. Osgood, “Error-free operation of an all-silicon waveguide photodiode at 1.9 μm,” IEEE Photon. Technol. Lett. 25(21), 2031–2034 (2013). [CrossRef]
  26. H. K. Fan, A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30(8), 1127–1134 (1959). [CrossRef]
  27. J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, A. P. Knights, “10 Gbps silicon waveguide-integrated infrared avalanche photodiode,” Opt. Express 21(17), 19530–19537 (2013). [CrossRef] [PubMed]
  28. D. W. Zheng, B. T. Smith, M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16(21), 16754–16765 (2008). [CrossRef] [PubMed]
  29. J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234–235 (2010). [CrossRef]
  30. http://www.mellanox.com/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited