OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 11205–11214
« Show journal navigation

Frequency down-conversion of 637 nm light to the telecommunication band for non-classical light emitted from NV centers in diamond

Rikizo Ikuta, Toshiki Kobayashi, Shuto Yasui, Shigehito Miki, Taro Yamashita, Hirotaka Terai, Mikio Fujiwara, Takashi Yamamoto, Masato Koashi, Masahide Sasaki, Zhen Wang, and Nobuyuki Imoto  »View Author Affiliations


Optics Express, Vol. 22, Issue 9, pp. 11205-11214 (2014)
http://dx.doi.org/10.1364/OE.22.011205


View Full Text Article

Acrobat PDF (895 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a low-noise frequency down-conversion of photons at 637 nm to the telecommunication band at 1587 nm by the difference frequency generation in a periodically-poled lithium niobate. An internal conversion efficiency of the converter is estimated to be 0.44 at the maximum which is achieved by a pump power of 0.43 W, whereas a rate of internal background photons caused by the strong cw pump laser is estimated to be 9 kHz/mW within a bandwidth of about 1 nm. By using the experimental values related to the intrinsic property of the converter, and using the intensity correlation and the average photon number of a 637 nm input light pulse, we derive the intensity correlation of a converted telecom light pulse. Then we discuss feasibility of a single-photon frequency conversion to the telecommunication band for a long-distance quantum communication based on NV centers in diamond.

© 2014 Optical Society of America

1. Introduction

Quantum repeaters for efficiently transmitting a quantum state through lossy and noisy quantum channels have been proposed [1

1. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011). [CrossRef]

] and actively studied for realizing long distance quantum communication [2

2. N. Gisin and R. O. B. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007). [CrossRef]

]. In the quantum repeater protocols, photons entangled with quantum memories at remote parties are sent to relay points, and they are measured by the Bell measurement for establishing the entanglement between the quantum memories at the remote parties. The elementary part that creates entanglement between a quantum memory and a photon has been demonstrated in atomic systems [3

3. D. N. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and light,” Science 306, 663–666 (2004). [CrossRef] [PubMed]

, 4

4. S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012). [CrossRef] [PubMed]

], trapped ion systems [5

5. S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009). [CrossRef] [PubMed]

] and solid-state systems [6

6. E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010). [CrossRef] [PubMed]

, 7

7. W. B. Gao, P. Fallahi, E. Togan, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012). [CrossRef] [PubMed]

]. In such systems, the wavelengths of the photons are strictly limited by the structure of their energy levels, which lie around visible range. On the other hand, when we look at optical-fiber networks, the photons at the telecommunication wavelengths are crucial for the efficient transmission of the photons. Thus a photonic quantum interface [8

8. P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990). [CrossRef] [PubMed]

] for visible-to-telecommunication wavelength conversion is considered to be inevitable for a long distance quantum communication based on the quantum repeaters [9

9. M. S. Shahriar, P. Kumar, and P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Phys. B: At. Mol. Opt. Phys. 45, 124018 (2012). [CrossRef]

].

So far, in order to build such a quantum interface, the frequency down-conversion working at a single-photon level from visible to the telecommunication wavelengths has been actively studied by using nonlinear optical media [10

10. A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Physics 6, 894–899 (2010). [CrossRef]

17

17. R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013). [CrossRef]

]. In the first experimental demonstration employing a light field with a non-classical property, the wavelength of 795 nm which corresponds to the D1 line of the rubidium atoms are converted to 1367 nm by using a third-order optical nonlinearity in a rubidium atomic cloud [10

10. A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Physics 6, 894–899 (2010). [CrossRef]

, 11

11. Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, and a. Kuzmich, “Entanglement of light-shift compensated atomic spin waves with telecom light,” Phys. Rev. Lett. 105, 260502 (2010). [CrossRef]

]. In [11

11. Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, and a. Kuzmich, “Entanglement of light-shift compensated atomic spin waves with telecom light,” Phys. Rev. Lett. 105, 260502 (2010). [CrossRef]

], preservation of the entanglement between two photons after the frequency down-conversion was also observed. For a wide-band and a compact wavelength conversion, the difference frequency generation (DFG) via a second-order optical nonlinearity in a periodically-poled lithium niobate (PPLN) has been used and the preservation of the quantum state through the wavelength conversion from 780 nm which corresponds to the D2 line of the rubidium atom to 1522 nm has been demonstrated [15

15. R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011). [CrossRef] [PubMed]

, 17

17. R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013). [CrossRef]

]. The non-classical property of a light converted to 1313 nm from a 711 nm light emitted by a quantum dot has also been demonstrated [16

16. S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012). [CrossRef] [PubMed]

]. In [14

14. S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825–12836 (2011). [CrossRef] [PubMed]

], the feasibility of the frequency down-conversion of a light at a single-photon level from 738 nm to 1557 nm by using the 1403 nm pump light has been shown for single-photon sources based on silicon-vacancy centers in diamond [18

18. E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011). [CrossRef]

].

In this paper, we demonstrate a low-noise wavelength conversion of a 637 nm light at a single-photon level to the telecommunication band by using a PPLN waveguide for realizing the efficient optical-fiber quantum communication based on NV centers in diamond [9

9. M. S. Shahriar, P. Kumar, and P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Phys. B: At. Mol. Opt. Phys. 45, 124018 (2012). [CrossRef]

]. The converted wavelength in this experiment is 1587 nm which is determined by the wavelength of 1064 nm of the cw pump light. In the experiment, we evaluate the performance of the wavelength converter, namely we clarify the overall conversion efficiency of the signal light and the amount of background photons induced by the conversion process. From the experimental results, we derive the intensity correlation and the average photon number of a converted telecom light pulse which are decided by those of a 637 nm input light pulse and the intrinsic property of the converter. Then we discuss the feasibility of the observation of non-classical property of the telecom light after the frequency down-conversion from a 637 nm light pulse. We found that when the transform-limited light pulse from the NV centers in diamond with a lifetime of 13.7 ns reported in [23

23. B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, and M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011). [CrossRef]

,24

24. N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012). [CrossRef]

] is prepared with a probability above 10−3, the intensity correlation of the converted telecom photon will be below 0.8 which indicates the non-classical property of the converted light.

2. Experiment

2.1. Experimental setup

The experimental setup is shown in Fig. 1. The 637 nm signal light is taken from a vertical (V) polarized cw external cavity laser diode with the linewidth of < 150 MHz and a maximum power of 9 mW. The power of the signal light input to the PPLN waveguide is adjusted by using a variable attenuator (VA) within the range from 1mW to a photon rate of 40 MHz. We use a cw pump laser with the center wavelength of 1064 nm and the linewidth of < 100 MHz for the wavelength conversion. The power of the pump laser coupled to the PPLN waveguide is varied up to ≈ 0.4 W by a polarization beamsplitter (PBS) and a half-wave plate (HWP). The pump beam is set to the vertical polarization by a HWP and then it is combined with the signal beam by a dichroic mirror. The two beams are coupled to the PPLN waveguide by using an aspheric lens (L1) of f = 8mm with anti-reflective coating for both the signal light and the pump light.

Fig. 1 Experimental setup. The cw signal light at 637 nm is frequency down-converted to 1587 nm by using a strong cw pump light at 1064 nm. The converted light is diffracted by the two Bragg gratings (BGT) and detected by the SSPD.

The PPLN waveguide we used is ridged-type waveguide, and its cross section is a square with side lengths of 8 μm. The PPLN as the core layer is Zn-doped, and the material of the cladding layer is lithium tantalite. They are combined by the direct bonding technique [29

29. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009). [CrossRef] [PubMed]

]. The length of the waveguide is 23 mm. The period of periodically-poled structure is 11.5 μm. Due to the type-0 quasi-phase matching condition, the V-polarized signal photon at 637 nm is converted to the V-polarized telecom photon at 1587 nm with the V-polarized strong pump beam at 1064 nm. The temperature is controlled to be ≈ 20°C. The phase-matching bandwidth for 637 nm signal light of this waveguide is calculated to be ≈ 0.1 nm.

The output photons from the PPLN waveguide are collimated by an aspheric lens (L2) of f = 8mm with anti-reflective coating for the signal light, pump light and telecom light. Two Bragg gratings (BGT) with a bandwidth of 1 nm extract only the converted telecom light among them. The combined bandwidth of two BGT is Δ̃ ≈ 0.7 nm. The telecom light is coupled to the single-mode fiber (DT), and detected by a superconducting single-photon detector (SSPD) after passing through an attenuator of ≈ 10 dB for preventing the saturation of the detection counts. The SSPD has a cavity structure and its quantum efficiency denoted by ε is ≈ 0.6 [30

30. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013). [CrossRef] [PubMed]

].

2.2. Experimental results

In order to estimate an internal conversion efficiency of the frequency down-converter and an amount of background photons generated by the conversion process, we first estimate the transmittance of the overall optical circuit by measuring the power of the light before and after the optical components. The coupling efficiency of the signal light to the PPLN waveguide is Tin ≈ 0.88. The diffraction efficiency of each of BGT is TBG ≈ 0.86. The telecom photons diffracted by the last BGT pass through the HWP and PBS, and then enter DT. The efficiency of these processes is estimated to be ≈ 0.42. As a result, the transmittance of the optical circuit from the first BGT to the front of the fiber attenuator is Toc ≈ 0.31. The transmittance of the fiber attenuator is Tatt ≈ 0.083.

The internal conversion efficiency in the PPLN depending on the pump power is estimated by the observed output power of the converted light coupled to DT connected to a power meter instead of the fiber attenuator and the SSPD in Fig. 1. In this measurement, we set the power of the input light at 637 nm coupled to the PPLN waveguide to be ≈ 0.84 mW. From the observed values by the power meter and the estimated transmittance Toc of the optical components, we estimate the internal conversion efficiencies of the photon number. The result is shown in Fig. 2. The conversion efficiency of the DFG process with a strong pump light is expected to be proportional to sin2(κP) [8

8. P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990). [CrossRef] [PubMed]

], where P represents the pump power. The best fit to the observed conversion efficiency with ηconv=ηconvmaxsin2(κP) gives ηconvmax0.44 and κ ≈ 5.8/W. The best conversion efficiency of 0.44 will be achieved at a pump power of ≈ 0.43 W.

Fig. 2 (a) Conversion efficiency from 637 nm to 1587 nm as a function of the pump power P. The curve fitted to the experimental data is described by ηconvmaxsin2(κP) with ηconvmax0.44 and κ ≈ 5.8/W.

We evaluate the amount of background photons at the down-converted wavelength of 1587 nm. The background photons were measured when we turned off the signal light and input only the pump light to the PPLN waveguide. Before we investigate the dependency of the background photons on the pump power, we first see the polarization property of the background photons, which was performed by measuring the background photon counts with various rotation angles of the HWP in front of the last PBS. This measurement was performed at 0.30 W pump power. The experimental result of the count rate of the background photons depending on the rotation angle is shown in Fig. 3(a). The degree of polarization of the background photons was ≈ 0.95. The standard deviations of the observed values under the assumption of the Poisson statistics of the observed counts are less than 0.01. We note that when we measured the polarization property for the signal light, the degree of the polarization of the signal photons was over 0.99 by subtracting the effect of the background photons from the observed counts. From the result, we see that while the polarization of the background photons is almost V, a small number of the background photons are orthogonal to V polarization. In the following experiment, H polarization component of the background photons is reflected by the PBS in front of DT.

Fig. 3 (a) The observed count rates of the background photons (blue circle) and the signal photons (red triangle) depending on the rotation angle of the HWP followed by the PBS and the detector. We used the 0.30 W pump power for the measurement. The degrees of polarization of the background photons and the signal photons were 0.95 and over 0.99, respectively. The result shows that the background photons include the H polarization. (b) The dependency of the background photon rate on the pump power when the angle of the HWP is 0. By using the dark count rate of d = 220 Hz, the background photon rate is fitted to the line described by BP + d with B ≈ 135 Hz/mW.

3. Discussion

Below we borrow the observed value of g0,in(2)0.16 and a lifetime of τ ≈ 13.7 ns for the 637 nm light pulse from the NV center in the diamond nanocrystal reported in [23

23. B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, and M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011). [CrossRef]

], and then we estimate the expected value of g0,out(2) for the converted telecom light. We assume that the spectral width of the 637 nm light is close to the transform-limit so that it is much narrower than ΔfilΔ̃. We choose τtime = 52ns to collect the pulsed signal light over 99%, and use P ≈ 0.43 W which achieves the maximum conversion efficiency in our experiment. From Eq. (3) and g0,in(2)0.16, we can calculate g0,out(2) which is shown as a function of Δfil for in,sig = 10−3, 10−2, 10−1, 1 in Fig. 4. As a reference, we also show g0,out(2) for the converted telecom light when the 637 nm signal light has g0,in(2)=0 and the same lifetime.

Fig. 4 The estimated g0,out(2) of the converted telecom light as a function of Δfil in the cases of g0,in(2)0.16 (solid curves) and g0,in(2)=0 (dotted curves). The measurement time is fixed to be τtime = 52ns. The four curves show the intensity correlation in the cases of in,sig = 1, 10−1, 10−2 and 10−3 from the bottom.

In practice, the apparent intensity correlation of the light measured by the Hanbury-Brown and Twiss setup [31

31. R. Hanbury Brown and R. Q. Twiss, “Correlation between Photons in two Coherent Beams of Light,” Nature 177, 27–29 (1956). [CrossRef]

] is affected by the dark count of the detectors. We assume that coupling efficiencies to the single-mode fibers and two photon detectors for the Hanbury-Brown and Twiss setup are the same as those used in our experiment, namely the transmittance of the optical circuit after the PPLN is Toc ≈ 0.31, the quantum efficiency is ε ≈ 0.6, and the dark count rate is d = 220 Hz. When a half BS is used for the measurement of g0,out(2), an expected observed value of g0,out(2) for the converted telecom light as a function of Δfil is shown in Fig. 5(a). From the figure, even for in,sig = 10−3, we see a non-classical intensity correlation g0,out(2)0.77 of the converted telecom light at Δfil = 1.2 × 10−3 which corresponds to about 100 MHz. Using Eq. (2), we also calculate an expected SNR of the converted telecom light at the each detector under the assumption that the 637 nm light is a mixture of two statistically-independent light sources composed of an ideal single photon and background photons that follow the Poisson statistics, and show the results in Fig. 5(b). We believe that the intensity correlation of the background photons is close to 1 because the observed cw background photons should spread in multiple modes even for the filter with Δfil = 1.2 × 10−3. We note that g0,out(2) is linearly dependent on the intensity correlation of the background photons from Eq. (2). For example, if the background photons had the intensity correlation of 1.5, the expected observed intensity correlation of the converted telecom light would be g0,out(2)0.88.

Fig. 5 The expected observed values of g0,out(2) and SNR of the converted telecom light when we perform the Hanbury-Brown and Twiss experiment as a function of Δfil in the cases of g0,in(2)0.16 (solid curves) and g0,in(2)=0 (dotted curves). The measurement time is fixed to be τtime = 52ns. (a) The four curves show the intensity correlation in the cases of in,sig = 1, 10−1, 10−2 and 10−3 from the bottom. (b) The four curves show the SNR in the cases of in,sig = 1, 10−1, 10−2 and 10−3 from the top.

In the above estimation, we assumed the spectral bandwidth of the 637 nm signal light is much smaller than the phase-matching bandwidth ≈ 0.1 nm of PPLN crystal and the filter bandwidth ΔfilΔ̃, where Δ̃ ≈ 0.7 nm, while it was not satisfied in the experiment reported in [23

23. B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, and M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011). [CrossRef]

] due to the inhomogeneous broadening at the room temperature. Such a transform-limited narrow bandwidth light pulse from the zero phonon line of a NV center in a bulk diamond at a low temperature has been reported in [20

20. A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations fluorescence,” Phys. Rev. Lett. 100, 077401 (2008). [CrossRef]

,26

26. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013). [CrossRef] [PubMed]

]. In [26

26. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013). [CrossRef] [PubMed]

], in,sig = 4 × 10−4 was reported, and the low preparation probability of the light leads to the expected value of g0,out(2) as ≈ 0.92 for Δfil = 1.2 × 10−3. In recent years, there are several studies for efficient collection of the light from NV center using a solid immersion lens [21

21. J. P. Hadden, J. P. Harrison, a. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. OBrien, and J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97, 241901 (2010). [CrossRef]

, 22

22. M. J. B. Tim Schroder, Friedemann Gadeke, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011). [CrossRef]

] and a photonic crystal cavity [32

32. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010). [CrossRef] [PubMed]

]. When such experimental efforts will meet our requirements of the 637 nm signal light in the near future, the demonstrated low noise frequency down converter will clearly achieve the conversion of the non-classical light from the NV centers to the telecom band.

4. Conclusion

In conclusion, we have demonstrated that the low noise frequency down-conversion of the photon at 637 nm which corresponds to a resonant wavelength of the NV center in diamond to the telecommunication band. The analysis based on our experimental results shows that if the transform-limited light pulse from the NV center in diamond is prepared even with a probability of 10−3, the intensity correlation of the telecom light after the frequency down-conversion with the proper frequency filtering will be well below 1. We believe that the result will lead to the efficient connection between solid-state devices composed of the NV center in diamond and telecom fiber networks.

Acknowledgments

This work was supported by the Funding Program for World-Leading Innovative R & D on Science and Technology (FIRST), MEXT Grant-in-Aid for Scientific Research on Innovative Areas 21102008, MEXT Grant-in-Aid for Young scientists(A) 23684035, JSPS Grant-in-Aid for Scientific Research(A) 25247068 and (B) 25286077.

References and links

1.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011). [CrossRef]

2.

N. Gisin and R. O. B. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007). [CrossRef]

3.

D. N. Matsukevich and A. Kuzmich, “Quantum state transfer between matter and light,” Science 306, 663–666 (2004). [CrossRef] [PubMed]

4.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012). [CrossRef] [PubMed]

5.

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009). [CrossRef] [PubMed]

6.

E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010). [CrossRef] [PubMed]

7.

W. B. Gao, P. Fallahi, E. Togan, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012). [CrossRef] [PubMed]

8.

P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990). [CrossRef] [PubMed]

9.

M. S. Shahriar, P. Kumar, and P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Phys. B: At. Mol. Opt. Phys. 45, 124018 (2012). [CrossRef]

10.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Physics 6, 894–899 (2010). [CrossRef]

11.

Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, and a. Kuzmich, “Entanglement of light-shift compensated atomic spin waves with telecom light,” Phys. Rev. Lett. 105, 260502 (2010). [CrossRef]

12.

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010). [CrossRef]

13.

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18, 22099–22104 (2010). [CrossRef] [PubMed]

14.

S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825–12836 (2011). [CrossRef] [PubMed]

15.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011). [CrossRef] [PubMed]

16.

S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012). [CrossRef] [PubMed]

17.

R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013). [CrossRef]

18.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011). [CrossRef]

19.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1 (2013). [CrossRef]

20.

A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations fluorescence,” Phys. Rev. Lett. 100, 077401 (2008). [CrossRef]

21.

J. P. Hadden, J. P. Harrison, a. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. OBrien, and J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97, 241901 (2010). [CrossRef]

22.

M. J. B. Tim Schroder, Friedemann Gadeke, and O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011). [CrossRef]

23.

B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, and M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011). [CrossRef]

24.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012). [CrossRef]

25.

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012). [CrossRef] [PubMed]

26.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013). [CrossRef] [PubMed]

27.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013). [CrossRef]

28.

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett. 35, 2804–2806 (2010). [CrossRef] [PubMed]

29.

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009). [CrossRef] [PubMed]

30.

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013). [CrossRef] [PubMed]

31.

R. Hanbury Brown and R. Q. Twiss, “Correlation between Photons in two Coherent Beams of Light,” Nature 177, 27–29 (1956). [CrossRef]

32.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010). [CrossRef] [PubMed]

OCIS Codes
(190.4223) Nonlinear optics : Nonlinear wave mixing
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 21, 2014
Manuscript Accepted: April 22, 2014
Published: May 1, 2014

Citation
Rikizo Ikuta, Toshiki Kobayashi, Shuto Yasui, Shigehito Miki, Taro Yamashita, Hirotaka Terai, Mikio Fujiwara, Takashi Yamamoto, Masato Koashi, Masahide Sasaki, Zhen Wang, and Nobuyuki Imoto, "Frequency down-conversion of 637 nm light to the telecommunication band for non-classical light emitted from NV centers in diamond," Opt. Express 22, 11205-11214 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-9-11205


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011). [CrossRef]
  2. N. Gisin, R. O. B. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007). [CrossRef]
  3. D. N. Matsukevich, A. Kuzmich, “Quantum state transfer between matter and light,” Science 306, 663–666 (2004). [CrossRef] [PubMed]
  4. S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484, 195–200 (2012). [CrossRef] [PubMed]
  5. S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009). [CrossRef] [PubMed]
  6. E. Togan, Y. Chu, a. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, a. S. Sørensen, P. R. Hemmer, a. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010). [CrossRef] [PubMed]
  7. W. B. Gao, P. Fallahi, E. Togan, A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature 491, 426–430 (2012). [CrossRef] [PubMed]
  8. P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990). [CrossRef] [PubMed]
  9. M. S. Shahriar, P. Kumar, P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Phys. B: At. Mol. Opt. Phys. 45, 124018 (2012). [CrossRef]
  10. A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Physics 6, 894–899 (2010). [CrossRef]
  11. Y. Dudin, A. Radnaev, R. Zhao, J. Blumoff, T. Kennedy, a. Kuzmich, “Entanglement of light-shift compensated atomic spin waves with telecom light,” Phys. Rev. Lett. 105, 260502 (2010). [CrossRef]
  12. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010). [CrossRef]
  13. N. Curtz, R. Thew, C. Simon, N. Gisin, H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18, 22099–22104 (2010). [CrossRef] [PubMed]
  14. S. Zaske, A. Lenhard, C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825–12836 (2011). [CrossRef] [PubMed]
  15. R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011). [CrossRef] [PubMed]
  16. S. Zaske, A. Lenhard, C. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012). [CrossRef] [PubMed]
  17. R. Ikuta, H. Kato, Y. Kusaka, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, N. Imoto, “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” Phys. Rev. A 87, 010301 (2013). [CrossRef]
  18. E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011). [CrossRef]
  19. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1 (2013). [CrossRef]
  20. A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Chan, G. Balasubramanian, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations fluorescence,” Phys. Rev. Lett. 100, 077401 (2008). [CrossRef]
  21. J. P. Hadden, J. P. Harrison, a. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. OBrien, J. G. Rarity, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett. 97, 241901 (2010). [CrossRef]
  22. M. J. B. Tim Schroder, Friedemann Gadeke, O. Benson, “Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens,” New J. Phys. 13, 055017 (2011). [CrossRef]
  23. B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, M. Lončar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004 (2011). [CrossRef]
  24. N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012). [CrossRef]
  25. T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012). [CrossRef] [PubMed]
  26. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86–90 (2013). [CrossRef] [PubMed]
  27. R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013). [CrossRef]
  28. J. S. Pelc, C. Langrock, Q. Zhang, M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett. 35, 2804–2806 (2010). [CrossRef] [PubMed]
  29. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009). [CrossRef] [PubMed]
  30. S. Miki, T. Yamashita, H. Terai, Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013). [CrossRef] [PubMed]
  31. R. Hanbury Brown, R. Q. Twiss, “Correlation between Photons in two Coherent Beams of Light,” Nature 177, 27–29 (1956). [CrossRef]
  32. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited