OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S2 — Mar. 10, 2014
  • pp: A233–A247
« Show journal navigation

A two-step design method for high compact rotationally symmetric optical system for LED surface light source

Xianglong Mao, Hongtao Li, Yanjun Han, and Yi Luo  »View Author Affiliations


Optics Express, Vol. 22, Issue S2, pp. A233-A247 (2014)
http://dx.doi.org/10.1364/OE.22.00A233


View Full Text Article

Acrobat PDF (1972 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A two-step optimization method is proposed to design a compact single-surface far-field illumination system, satisfying the requirements of illuminance uniformity and light control efficiency with h/D less than 3:1. In the first step, the conventional tailored edge-ray design (TED) method is employed to generate prescribed illumination distribution for the rotationally symmetric optical system, and an optimization process is added to reach a balance between illuminance uniformity and light control efficiency. Based on the improved TED method, we can construct an initial optical system more accurate than that obtained by point source assumption. In the second step, an iterative feedback modification process is employed to optimize the initial optical system, so that the degradation of performance due to insufficient control of skew rays is mitigated. Because the initial optical system constructed in the first step is accurate enough, the second-step feedback modification can converge to a satisfactory result within several iterations. As an example, a free-form rotationally symmetric lens with the height of h = 25 mm is designed for a discoidal LED source with the diameter of D = 10 mm. Both high illuminance uniformity of 0.75 and high light control efficiency of 0.86 are obtained simultaneously. The method can be further used to achieve more complex non-uniform illumination distributions. The design of an optical system with h/D = 2.5:1 and a circular linear illumination distribution is demonstrated.

© 2014 Optical Society of America

1. Introduction

As a new generation of light source, light-emitting diodes (LEDs) have been widely used in different lighting applications due to their high efficiency and long lifetime [1

1. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol. 3(2), 160–175 (2007). [CrossRef]

, 2

2. G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light source,” Light. Science & Applications 2(5), e66 (2013). [CrossRef]

]. Free-form optical systems [3

3. R. Winston, J. C. Miñano, P. Benítez, N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier, 2005), Chaps. 7-8.

10

10. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010). [CrossRef] [PubMed]

] are often employed to improve the lighting performance by reshaping the light intensity distribution of the LEDs, which are taken as point light sources in most cases. However, due to the low power of a single-chip LED (usually about 1W), dozens or even hundreds of LEDs (each with a secondary optical system) are needed to achieve a high flux level required by general lighting applications. This discrete structure results in a huge luminaire dimension, leading to high cost due to considerable waste of materials and inconveniences in assemblage, dismantlement and maintenance of the luminaire.

The above problems can be solved by using the emerging high brightness LED surface light source (e. g. the chip-on-board LED source) [11

11. O. Kückmann, “High power LED arrays: special requirements on packaging technology,” Proc. SPIE 6134, 613404 (2006). [CrossRef]

, 12

12. Cree LED products, “Cree XLamp LEDs” (CREE 2013). http://www.cree.com/led-components-and-modules/products/xlamp

] instead of conventional single-chip LEDs in the luminaire design. The high brightness LED surface light source, wherein multiple LED chips are directly integrated within a single package, can easily achieve a power of tens to hundreds of watts. As a result, it can obtain a high luminous flux with a relatively small light-emitting area. Therefore, LED surface light source enables an excellent miniaturization and design flexibility of the luminaries, and is considered a very promising technical route.

In fact, point light source or surface light source is a relative concept, as shown in Fig. 1.
Fig. 1 (a) Point light source and (b) surface light source.
The ratio of center height h of the optical system to the maximum dimension D of the source is used in this paper to approximately describe the extension of the source as well as the compactness of the optical system. Generally, the source can be considered as a point source when h/D is much larger than 10:1 [3

3. R. Winston, J. C. Miñano, P. Benítez, N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier, 2005), Chaps. 7-8.

].

A LED surface light source usually has a diameter of over 1 cm [12

12. Cree LED products, “Cree XLamp LEDs” (CREE 2013). http://www.cree.com/led-components-and-modules/products/xlamp

]. In practical applications, it is desirable to limit the dimension-ratio h/D to within 3:1 for system miniaturization and cost reduction. The extension of the source will have a dramatic impact on the target distribution if the optical system is based on the point source assumption, as illustrated in Fig. 2.
Fig. 2 Lens with a center height of h = 25 mm constructed based on point source approximation to generate a uniform illuminance distribution and simulation results with (a) a point source with a diameter of D = 10−5 mm, (b) and a surface source with a diameter of D = 10 mm.
A rotationally symmetric lens with a center height of h = 25 mm is designed adopting the point source approximation. A uniform target distribution is obtained for a point source. However, obvious deviation occurs when a discoidal LED surface source with D = 10 mm is used.

Fig. 3 Each point on a single optical surface can only precisely control one ray emitted from the LED surface light source.
However, designing a compact optical system for surface light sources is difficult, because each point on the optical surface can only precisely control one ray emitted from the light source. As shown in Fig. 3, assuming Ray 1 passing through a point P on the optical surface is precisely refracted into the direction of Ray 1’, with the normal vector at P determined by Snell’s law, it is found that the refractive directions of other rays (e. g. Rays 2 and 3), emitted from different points across the source and passing through the same point P on the optical surface, are also determined and cannot be controlled as prescribed.

Most of the existing optical system designing methods are based on point light source assumption. Only a few methods have been reported to cope with the surface light sources. They are mainly classified into two categories: one is inherently taking the extension of the source into account, and the other is still using point source approximation, but with an additional optimization process added. The first category includes the simultaneous multiple surface (SMS) design method [13

13. P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004). [CrossRef]

, 14

14. O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real-world applications,” Proc. SPIE 5529, 35–47 (2004). [CrossRef]

], the surfaces-overlapping method [15

15. K. Wang, Y. Han, H. Li, and Y. Luo, “Overlapping-based optical freeform surface construction for extended lighting source,” Opt. Express 21(17), 19750–19761 (2013). [CrossRef] [PubMed]

] and the tailored edge-ray design (TED) method [16

16. H. R. Ries and R. Winston, “Tailored edge-ray reflectors for illumination,” J. Opt. Soc. Am. A 11(4), 1260–1264 (1994). [CrossRef]

19

19. J. M. Gordon and A. Rabl, “Reflectors for uniform far-field irradiance: fundamental limits and example of an axisymmetric solution,” Appl. Opt. 37(1), 44–47 (1998). [CrossRef] [PubMed]

]. The SMS design method is indeed an effective method to deal with extended source, by coupling multiple pairs of incoming and outgoing wavefronts with multiple surfaces designed simultaneously [13

13. P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004). [CrossRef]

]. Both numerical and analytic solutions have been proposed. The SMS design method is a rather effective way to transport the energy of the light source into a prescribed target region. However, as mentioned in Ref [14

14. O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real-world applications,” Proc. SPIE 5529, 35–47 (2004). [CrossRef]

], it is not easy to directly-calculate or approximate the outgoing wavefront that create a specified irradiance or intensity distribution. As for the surfaces-overlapping method [15

15. K. Wang, Y. Han, H. Li, and Y. Luo, “Overlapping-based optical freeform surface construction for extended lighting source,” Opt. Express 21(17), 19750–19761 (2013). [CrossRef] [PubMed]

], the optical system is constructed by overlapping several optical surfaces constructed using point light sources. The method is simple and easy to operate, yet it relies on a try-and-error strategy. The TED method was proposed in the 1990s and was generally focused on trough reflectors with translational symmetry for strip or tubular sources [16

16. H. R. Ries and R. Winston, “Tailored edge-ray reflectors for illumination,” J. Opt. Soc. Am. A 11(4), 1260–1264 (1994). [CrossRef]

18

18. P. T. Ong, J. M. Gordon, and A. Rabl, “Tailored edge-ray designs for illumination with tubular sources,” Appl. Opt. 35(22), 4361–4371 (1996). [CrossRef] [PubMed]

]. In the method, trough reflectors were tailored based on the edge-ray principle to control the flashed area and thus the intensity in a given direction. The TED method was extended to design rotationally symmetric reflector by Gordon and Rabl in 1998 [19

19. J. M. Gordon and A. Rabl, “Reflectors for uniform far-field irradiance: fundamental limits and example of an axisymmetric solution,” Appl. Opt. 37(1), 44–47 (1998). [CrossRef] [PubMed]

], in which a quasi-empirical formula for the luminance function was adopted and a uniform illumination distribution was achieved. Recently, based on the concept of the TED method, a double-surface rotationally symmetric lens has been successfully designed for a discoidal LED source by Peter Goldstein, and a uniform angular intensity distribution was generated within a specified range [20

20. P. Goldstein, “Radially symmetric freeform lens design for extended sources,” Proc. SPIE 8487, 84870C (2012). [CrossRef]

]. By adopting two surfaces, part of the light emitted from the LED source can be precisely controlled to some degree, but it increases the difficulties in model fabrication. Besides, the method is introduced to generate prescribed angular intensity distribution rather than the illumination distribution desired for many general lighting applications, such as street lighting and interior lighting. And it is worth noting that all the above-mentioned work on TED usually just takes the lighting uniformity into account, while the efficiency of the optical system, which also plays an important role in illumination design, is to some extent neglected.

Most of the present methods belong to the second category, which firstly construct an initial optical system based on point source assumption, and then introduce some optimization method to improve the performance of the initial system [21

21. R. J. Koshel, “Simplex optimization method for illumination design,” Opt. Lett. 30(6), 649–651 (2005). [CrossRef] [PubMed]

25

25. W. J. Cassarly, “Iterative reflector design using a cumulative flux compensation approach,” Proc. SPIE 7652, 76522L (2010). [CrossRef]

]. However, these methods are mainly used in the case of h/D > 5:1, where the simulated distribution does not deviate significantly from the desired distribution. For h/D < 3:1, all these optimization methods turn out to be hard to obtain a satisfactory result or simply fail to converge, as the start point constructed based on point source assumption becomes much worse. To design a highly compact optical system with high performance, a more precise initial optical system is urgently desired.

In fact, to our best knowledge, for the case of h/D < 3:1, few methods have been reported to design rotationally symmetric single-surface illumination systems while meeting requirements for illuminance uniformity and light control efficiency. In this paper, a two-step optimization method is proposed for the design of such an optical system, to generate a uniform far-field illumination distribution with an illuminance uniformity exceeding 0.7 and a light control efficiency beyond 0.8. As mentioned above, the performance of the initial point plays a key role in the optimization strategy. Therefore, in the first step, a more accurate initial optical system is constructed by an improved TED method. The classical TED method is used to form a circular uniform illumination pattern, and then an optimization process is added to obtain a trade-off between illuminance uniformity and light control efficiency. In the second step, an iterative feedback modification process is employed to optimize the initial optical system, so that degradation due to insufficient control of skew rays is alleviated [3

3. R. Winston, J. C. Miñano, P. Benítez, N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier, 2005), Chaps. 7-8.

]. Because the initial optical system constructed in the first step is rather accurate, the second-step feedback modification can converge to a satisfactory result within several iterations. As an example, a compact single-surface lens is designed for a discoid LED surface light source with h/D = 2.5:1. After 3 iterations in the second-step optimization, an illuminance uniformity of 0.75 and a light control efficiency of 0.86 are simultaneously secured.

2. Design process

The purpose of the paper is to design a high performance compact rotationally symmetric single-surface optical system for a LED surface source to generate a uniform far-field illumination distribution within a prescribed target field with h/D < 3:1, while keeping the light control efficiency η > 0.8 and illuminance uniformity UE > 0.7 [26

26. CIE (Commission Internationale de L’Eclairage), Lighting of Work Places Part 1: Indoor (CIE publication 008, Vienna, 2001).

]. Here, the light control efficiency η is defined as the ratio of the flux within the desired field to the total flux emitted by the source, while the illuminance uniformity UE is defined as the ratio of minimum to average illuminance in the specified target region.

The proposed two-step optimization process is described by a flow diagram shown in Fig. 4.
Fig. 4 A flow diagram of the design process.
In the first step, an initial lens model is constructed based on an improved TED method, wherein the conventional TED method is utilized to solve a rotationally symmetric illumination distribution problem, and an optimization process is added to ensure a trade-off between illumination uniformity and light control efficiency. As a result, a more accurate initial lens model is constructed than that obtained with the conventional point source approximation. In the second step, an iterative feedback modification process is employed to optimize the initial lens model, so that the degradation of performance due to insufficient control of skew rays is alleviated. As the TED method is originally proposed to solve the two-dimensional (2D) light reshaping problem, it inherently ignores the impact of the skew rays in a three-dimensional (3D) optical system design. Although the initial lens model generated by the improved TED method performs much better than using point source assumption, it is still defective and a second-step optimization is necessary. A detailed description of the second-step optimization will be discussed later in Section 2.2. It is worth noting that, as a result of the high performance of the initial lens obtained by the improved TED method, the second-step feedback optimization is very fast and effective, usually requiring less than ten iterations.

2.1 First step: constructing an initial lens model based on an improved TED method

The design process can be done in 2D condition because the light source, the lens, and the desired illuminance distribution are all rotationally symmetric. So in this paper only the 2D design process is taken into account. The 3D model of the lens can be obtained simply by rotating the designed 2D profile. The conventional TED method is used here to achieve an illumination distribution with rotational symmetry.

Fig. 5 (a) Luminous intensity and illuminance; (b) Luminous intensity and projection length of the source through the lens; (c) Meridian rays (in green) and skew rays (in red).
The far-field lighting system is shown in Fig. 5(a), where H is the distance between the light source and the target plane, θ is the ray angle with respect to the light axis, and x is the corresponding coordinate of the target plane. As detailed in the Appendix, we can easily get:
E2D(x)=cos2θHI2D(θ),
(1)
where I2D(θ) is the luminous intensity in the direction of θ and E2D(x) is the illuminance at point x, both in 2D condition. We can also obtain Eq. (2) as described in the Appendix:
I2D(θ)=L2DW(θ),
(2)
where L2D is the surface luminance of the lens in 2D condition and W(θ) is the apparent projection length of the LED source in the direction of θ as seen through the lens shown in Fig. 5(b). The system is assumed lossless and the LED source is taken to be Lambertian. The LED illuminates the lens, and then the surface of the lens becomes a secondary Lambertian source with a uniform luminance according to the conservation of luminance. Therefore, L2D is constant and independent of the direction θ. For the design of generating a uniform illuminance distribution E2D (x) = E0, through Eqs. (1) and (2), we can get:
W(θ)=W0cos2θ,
(3)
where W0 is the projected length in the axial direction. Therefore, in order to obtain a uniform illuminance distribution we need just to design a lens that can control the apparent-projected length of the LED source in prescribed directions in the form of Eq. (3). However, what calls for special attention is that only the meridian rays are taken into consideration in the 2D design process, while the skew rays are inherently ignored as shown in Fig. 5(c). This will bring a performance degradation of the 3D optical system generated simply by rotating the 2D profile. A second-step optimization is introduced later in Section 2.2 to alleviate the influence of the ignored skew rays.

An intermediate-points-auxiliary geometric configuration method is used here to construct the 2D profile of the lens (see Fig. 7).
Fig. 7 Geometric configuration of the profile of the lens, wherein O’ is an arbitrary point between O and F’ while Bi is an arbitrary point on the calculated profile, the output ray of the ray OBi will form an angle θi’ that is larger than θi with the y-axis according to the Snell’s law.
The y-axis is assumed to be the rotational symmetry axis of the source and the lens. F and F’ are two edge points of the source. Only the profile of the lens in the first quadrant needs to be designed because of the symmetry of the system. The design process is described as follows.

1). Presetting a quadratic polynomial curve A0B0as the central portion of the profile

The profile of the system is constructed from the center to the border. The central portion A0B0 of the profile is preset as the quadratic polynomial form of Eq. (4):
y=ax2+bx+c.
(4)
Quadratic polynomial is chosen because it is the simplest form with three degrees of freedom to satisfy the constraints for the selection of curve A0B0 described as follows.

Assuming that the incident ray FA0 emitted from the edge point F refracts at point A0 and the outgoing ray is parallel to the y-axis, while another ray F’B0 emitted from the edge point F’ refracts at point B0 and also emits parallel to the y-axis. According to the edge-ray principle, the projection length W0 along the y-axis is determined by the outgoing rays of the edge incident rays FA0 and F’B0. Given the position of B0, the normal vector N0 at B0 is calculated with the Snell’s law. Then, the preset quadratic polynomial curve A0B0 with symmetry about the y-axis is obtained. It is obvious that the curve A0B0 is determined by the choice of point B0. The selection of point B0 should follow two additional principles: Firstly, limitations and requirements of the size of the lens should be taken into account; Secondly, the projection angular range needs to be guaranteed to cover the specified illuminating region.

2). Generating the rest part of the profile by an intermediate-points-auxiliary geometric construction method

It is worth noting that the projection length W(θi) is determined by the outgoing rays of FAi and F’Bi, i.e., the rays FAi and F’Bi which are used to define edge rays guarantee the mapping between the boundary of the source and target. This conclusion is confirmed by the fact that the output ray of the ray passing through any point, such as O’, on OF’ and Bi (i = 0, 1, 2 …) will form an angle larger than θi with the y-axis according to the Snell’s law, as illustrated in Fig. 7.

3). Optimizing the 3D model of the lens

An optimization process is then added to the above-mentioned TED process to obtain a balance between the illumination uniformity and the light control efficiency.

The 3D model of the lens is obtained by rotating the 2D profile obtained above about the y-axis. The performance of the lens is simulated using Monte-Carlo ray tracing method. However, the simulation result usually deviates from the requirements to some extent due to somewhat arbitrary choice of the preset curve A0B0, which determines the profile of the lens. Therefore, the curve A0B0 should be optimized to improve the performance. Moreover, as the curve A0B0 is determined by point B0, coordinates of point B0 are chosen as the optimization variables. Thus, the optimization problem can be described as:
{Optimizationvariables:xB0,yB0Meritfunction:MF(xB0,yB0)Constraints:ηηT,UEUET,
(5)
where MF is the merit function used to evaluate the overall lighting performance, and ηT and UET are the minimum requirements for η and UE, respectively. For a single optical surface and a surface light source, it is hard to simultaneously control the edge falloff and the distribution. Namely, tradeoffs between η and UE must be made. Thus the merit function MF is defined as:
MF=ση+(1σ)UE,
(6)
where σ (0 < σ < 1) is the weight factor that controls the trade-off between η and UE. Constantly modify the location of point B0 and repeat the design process mentioned above till MF is optimal, and the initial optimal lens model is obtained.

A more detailed explanation of the effect of optimization is illustrated in Fig. 8.
Fig. 8 The emergence angle θi’ of the ray FBi will be larger than the prescribed maximal emergence angle θmax which will cause a light spillage.
If the position of B0 is selected to make the exit ray of ray FB0 take an angle of θmax, the exit angle θi’ of the ray FBi will be larger than the prescribed maximal emergence angle θmax. Therefore, if we choose the position of B0 to make θmax right corresponding to the edge of the target field as the conventional TED method does, the illumination uniformity within the target region may be ensured, but a large portion of light may be thrown outside of the target. On the hand, if the position of B0 is selected to make θmax much smaller, an improvement of the light control efficiency can be realized. However, the illumination uniformity will deteriorate. As a result, the preset curve A0B0 must be optimized to get a balance between the light control efficiency and the illumination uniformity.

2.2 Second step: iterative feedback modification of the lens model

After the first step, the initial optimal lens model is obtained and the overall MF is optimized. The corresponding simulation result of the initial lens model obtained above is usually much better than that based on either point source assumption or conventional TED method. However, the resulted illuminance distribution may still deviate somewhat from the desired one, especially for the central region. One reason is the insufficient control of skew rays, which exist inherent in the TED method [16

16. H. R. Ries and R. Winston, “Tailored edge-ray reflectors for illumination,” J. Opt. Soc. Am. A 11(4), 1260–1264 (1994). [CrossRef]

20

20. P. Goldstein, “Radially symmetric freeform lens design for extended sources,” Proc. SPIE 8487, 84870C (2012). [CrossRef]

], and the other may be the errors occurred in the numerical construction process. An iterative feedback method [24

24. Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18(9), 9055–9063 (2010). [CrossRef] [PubMed]

] is introduced to compensate for this deviation, as illustrated in Fig. 4. Assuming the desired illuminance distribution along x-axis is E0(x) and the simulation result is ES(x), a new illuminance distribution EM(x) is first calculated by modifying E0(x) with a specific feedback function β(x) based on the deviation between E0(x) and ES(x). Then the projection length W(θ) of the light source through the lens is adjusted using the new illuminance distribution EM(x) according to Eqs. (1) and (2). Finally, the lens model is redesigned using the new W(θ) and the optimized preset curve A0B0 based on the method described in section 2.1. Multiple iterations should be performed until the final simulation result converges or becomes acceptable. The feedback function used here is defined as:
βj(x)={E0(x)/[α1ESj(x)+(1α1)E0(x)]}α2,
(7)
where 0 < α1 ≤ 1 and α2 > 0 are the adjustable parameters, and ESj(x) is the simulation result of the j-th iteration. After J times of iterations, the modified illuminance distribution EMJ(x) becomes:
EMJ(x)=Πj=1Jβj(x)E0(x).
(8)
Usually several iterations are enough for the second-step optimization to converge to an optimal result.

3. Design example

3.1 Parameters setting

As an application example of the proposed method, a rotationally symmetric lens with a center height of 2.5 cm is designed for a discoidal LED surface light source with a diameter of 1 cm to generate a uniform illuminance distribution within a given circular target field, as depicted in Fig. 9.
Fig. 9 Parameters of the target plane, the lens and the LED source.
The dimension-ratio h/D is 2.5 for this optical system, which represents a high compactness. The LED surface source is assumed to be a Lambertian source with the maximum divergence half-angle of 90°. The circular target plane with a radius of R = 10 m is placed H = 10 m away from the source. The LED source is assumed to be immersed in the lens. The refractive index of the lens material is set as n = 1.59.

Other design parameters are selected as follows: σ = 0.5, α1 = 0.5, α2 = 1, ηT = 0.8 and UET = 0.7. The restraint on UE follows the CIE standard for lighting of work places [26

26. CIE (Commission Internationale de L’Eclairage), Lighting of Work Places Part 1: Indoor (CIE publication 008, Vienna, 2001).

]. As a result, the merit function MF in Eq. (6) becomes:
MF=0.5η+0.5UE.
(9)
And the feedback function in Eq. (7) becomes:

βj(x)=2E0(x)/[ESj(x)+E0(x)].
(10)

Using these functions, an initial lens model is first constructed by the improved TED method. And then, the second-step iterative feedback modification is employed to further improve the performance of the initial lens. It takes 3 iterations in less than 2 minutes for the second-step optimization to converge. Therefore, the second-step is very fast and effective, owing to the accuracy of the initial lens model.

3.2 Results and discussion

Fig. 11 Simulation results: (a) initial result based on point source assumption without feedback; (b) final result based on point source assumption with feedback; (c) initial result based on improved TED method without feedback; (d) final result based on improved TED method with feedback.
The simulated performances of the lens after the first- and the second-step optimization are shown in Figs. 11(c) and 11(d) respectively. As a comparison, the simulation results of lens designed using point source assumption with and without feedback modification are also shown in Figs. 11(a) and 11(b), respectively. None of the results shows a clear edge due to the intrinsic limitations of a single optical surface and a surface light source. Result of the initial design based on point source approximation shows a highly concentrated energy distribution in the central portion of the target plane, which can be improved by employing feedback modification, as shown in Figs. 11(a) and 11(b). But there is still considerable fluctuation in the central part after feedback modification, because it is hard for the feedback modification process to converge or obtain an optimal result from a bad start point obtained with point source assumption. The initial optical system constructed with point source assumption has a large light control efficiency of 0.95, while the illuminance uniformity is only 0.40, which is far below the minimum requirement of UET = 0.7. By feedback modification, the final optical system designed by point source approximation has an illuminance uniformity of 0.70, just passing the minimum requirement, but the light control efficiency is only 0.78, short of the minimum requirement of ηT = 0.8.

When the proposed two-step optimization is used, the initial simulation result is much better except for a small depression in the center, which is almost completely eliminated by the second-step feedback modification, as shown in Figs. 11(c) and 11(d). The optimized optical system exhibits a high illuminance uniformity of 0.75 as well as a high light control efficiency of 0.86, satisfying both requirements simultaneously. It is worth noting that, the illuminance uniformity in central regions with radius < 8.5 m is even higher than 0.90, as can be seen in Fig. 11(d).

The lens model obtained with the proposed two-step optimization is shown in Fig. 12.
Fig. 12 (a) Front view and dimensioning, and (b) full view of the optical system.
The height of the lens is 25 mm, while the diameter is about 33.5 mm.

In order to demonstrate the effectiveness of the proposed method in designing highly compact optical systems, a series of optical system models with h/D = 3, 2, 1.5 and 1 are designed gradually shrinking the central height of the lens while keeping the diameter of light source and all the other settings the same as described in Section 3.1. The corresponding simulation results are shown in Fig. 13.
Fig. 13 Comparison of simulation results of the optical systems designed by the proposed method with different dimension ratios h/D on three parameters: illuminance uniformity, light control efficiency and merit function.
All the three lighting parameters, UE, η and MF, decrease with the dimension ratio h/D. The illuminance uniformity UE > 0.70 and light control efficiency η > 0.80 are secured for all dimension ratios except the case with h/D = 1. Even for h/D = 1, UE = 0.68 and η = 0.62 could still be obtained. As a whole, the merit function MF is used to indicate the performance of the design, and it changes from 0.85 to 0.65 as h/D decreases.

In fact, this method can also be used to form more complex non-uniform illumination distribution, such as linear illumination distribution. As an example, an optical system with h/D = 2.5:1 is also designed to form a circular linear illumination distribution. Apart from the target distribution, all the other parameters are the same as those in the example mentioned in Section 3.1. The target distribution is described as Eq. (11):
E2D(x)=E0(123xR)=E0(123HtanθR).
(11)
From Eqs. (1) and (2), we can get the expression of the projection length about θ:
W(θ)=W02(123HtanθR)cos2θ.
(12)
The lens model and the normalized simulation result are shown in Fig. 14.
Fig. 14 (a) Lens model to generate a linear illumination distribution and (b) the simulated illuminance distribution.
A fairly precise linear distribution is achieved with a light control efficiency of 0.85 and a relative standard deviation (RSD) of 0.039. RSD is used here to represent the deviation of the simulated illumination distribution from the desired one, defined as:
RSD=1N-1i=1N(ES(xi)E(xi)E(xi))2,
(13)
where N is the total number of the positions to be calculated while ES(xi) and E(xi) are the measured and the desired illuminance at point xi, respectively.

4. Conclusions

In practical applications, highly compact optical system is usually desired for LED surface light source to miniaturize the overall illumination system. For example, the height of an optical lens is usually expected to be less than 3 cm for a 1-cm-diameter LED source, i.e., the dimension-ratio h/D is usually desired to be limited to less than 3:1. In addition, a practical optical system should provide a high illuminance uniformity UE up to 0.7 as well as a high light control efficiency η up to 0.8. However, few effective methods have been reported yet to design such an optical system with high performance. We propose a two-step optimization method to design compact free-form rotationally symmetric single-surface optical system with h/D < 3:1. In the first step, an accurate initial optical system model is constructed by an improved TED method, where an optimization process is added to the conventional TED method to get a balance between η and UE. In the second step, an iterative feedback modification strategy is adopted to mitigate the performance degradation due to insufficient control of skew rays. It takes only a limited number of iterations for the second-step feedback modification to converge to a satisfactory result, thanks to the high accuracy of the initial optical system constructed in the first step. As an example, a free-form rotationally symmetric lens with a height of h = 25 mm is designed for a discoidal LED source which has a diameter of D = 10 mm. High illuminance uniformity of 0.75 and high light control efficiency of 0.86 are obtained simultaneously. The proposed method can also be used to form more complex non-uniform illumination distribution. An optical system with h/D = 2.5:1 is also designed to form a circular linear illumination distribution using the method, where a light control efficiency of 0.85 and a relative standard deviation of 0.039 are obtained. It is illustrated that this method is very effective in designing highly compact optical system with high performance. However, this method is limited to designing rotationally or translationally symmetric optical systems at present, and how to extend it to design more complex free-form optical system remains the topic for further investigation.

Appendix

As illustrated in Fig. 5, the luminous intensity I2D (θ) in the direction of θ in 2D condition is defined as [27

27. J. Chaves, Introduction to Nonimaging Optics (Taylor & Francis, 2008), Chap. 16.

]:
I2D(θ)=dΦdθ,
(14)
where and are the differentials of the flux Φ and the ray angle θ, respectively. The illuminance E2D (x) at point x is defined as [27

27. J. Chaves, Introduction to Nonimaging Optics (Taylor & Francis, 2008), Chap. 16.

]:
E2D(x)=dΦdx,
(15)
where dx is the differential of x. The differential relationship between θ and x can be easily derived from Fig. 5(a):
dθ=dxcos2θH.
(16)
According to Eqs. (14)-(16), we can get:
E2D(x)=cos2θHI2D(θ).
(17)
The definition of luminance L2D in 2D condition is described as [27

27. J. Chaves, Introduction to Nonimaging Optics (Taylor & Francis, 2008), Chap. 16.

]:
L2D=d2Φdxcosθdθ.
(18)
From Eqs. (14) and (18), we can get:
I2D(θ)=L2Dcosθdx=L2DW(θ).
(19)
where W(θ) is the apparent projection length of the source in the direction of θ as seen through the lens.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61307024, 61176015, and 61176059), the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant Nos. 2011BAE01B07, and 2012BAE01B03), Science and Technology Planning Project of Guangdong Province (Grant No. 2011A081301003), the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2012KF09), the National Basic Research Program of China (Grant Nos. 2011CB301902, and 2011CB301903), the High Technology Research and Development Program of China (Grant Nos. 2011AA03A112, 2011AA03A106, and 2011AA03A105).

References and links

1.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol. 3(2), 160–175 (2007). [CrossRef]

2.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light source,” Light. Science & Applications 2(5), e66 (2013). [CrossRef]

3.

R. Winston, J. C. Miñano, P. Benítez, N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier, 2005), Chaps. 7-8.

4.

W. A. Parkyn, “The design of illumination lenses via extrinsic differential geometry,” Proc. SPIE 3482, 154 (1998). [CrossRef]

5.

H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19(3), 590–595 (2002). [CrossRef] [PubMed]

6.

V. Oliker, “Geometric and variational methods in optical design of reflecting surfaces with prescribed irradiance properties,” Proc. SPIE 5942, 594207 (2005). [CrossRef]

7.

L. Wang, K. Qian, and Y. Luo, “Discontinuous free-form lens design for prescribed irradiance,” Appl. Opt. 46(18), 3716–3723 (2007). [CrossRef] [PubMed]

8.

Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008). [CrossRef] [PubMed]

9.

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A, Pure Appl. Opt. 11(10), 105501 (2009). [CrossRef]

10.

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010). [CrossRef] [PubMed]

11.

O. Kückmann, “High power LED arrays: special requirements on packaging technology,” Proc. SPIE 6134, 613404 (2006). [CrossRef]

12.

Cree LED products, “Cree XLamp LEDs” (CREE 2013). http://www.cree.com/led-components-and-modules/products/xlamp

13.

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004). [CrossRef]

14.

O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real-world applications,” Proc. SPIE 5529, 35–47 (2004). [CrossRef]

15.

K. Wang, Y. Han, H. Li, and Y. Luo, “Overlapping-based optical freeform surface construction for extended lighting source,” Opt. Express 21(17), 19750–19761 (2013). [CrossRef] [PubMed]

16.

H. R. Ries and R. Winston, “Tailored edge-ray reflectors for illumination,” J. Opt. Soc. Am. A 11(4), 1260–1264 (1994). [CrossRef]

17.

A. Rabl and J. M. Gordon, “Reflector design for illumination with extended sources: the basic solutions,” Appl. Opt. 33(25), 6012–6021 (1994). [CrossRef] [PubMed]

18.

P. T. Ong, J. M. Gordon, and A. Rabl, “Tailored edge-ray designs for illumination with tubular sources,” Appl. Opt. 35(22), 4361–4371 (1996). [CrossRef] [PubMed]

19.

J. M. Gordon and A. Rabl, “Reflectors for uniform far-field irradiance: fundamental limits and example of an axisymmetric solution,” Appl. Opt. 37(1), 44–47 (1998). [CrossRef] [PubMed]

20.

P. Goldstein, “Radially symmetric freeform lens design for extended sources,” Proc. SPIE 8487, 84870C (2012). [CrossRef]

21.

R. J. Koshel, “Simplex optimization method for illumination design,” Opt. Lett. 30(6), 649–651 (2005). [CrossRef] [PubMed]

22.

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended sources,” Proc. SPIE 7423, 742302 (2009). [CrossRef]

23.

W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng. 49(6), 063003 (2010). [CrossRef]

24.

Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18(9), 9055–9063 (2010). [CrossRef] [PubMed]

25.

W. J. Cassarly, “Iterative reflector design using a cumulative flux compensation approach,” Proc. SPIE 7652, 76522L (2010). [CrossRef]

26.

CIE (Commission Internationale de L’Eclairage), Lighting of Work Places Part 1: Indoor (CIE publication 008, Vienna, 2001).

27.

J. Chaves, Introduction to Nonimaging Optics (Taylor & Francis, 2008), Chap. 16.

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(080.1753) Geometric optics : Computation methods
(220.2945) Optical design and fabrication : Illumination design
(080.4225) Geometric optics : Nonspherical lens design
(080.4298) Geometric optics : Nonimaging optics

ToC Category:
Light-Emitting Diodes

History
Original Manuscript: November 19, 2013
Revised Manuscript: December 14, 2013
Manuscript Accepted: January 11, 2014
Published: January 22, 2014

Citation
Xianglong Mao, Hongtao Li, Yanjun Han, and Yi Luo, "A two-step design method for high compact rotationally symmetric optical system for LED surface light source," Opt. Express 22, A233-A247 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S2-A233


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol.3(2), 160–175 (2007). [CrossRef]
  2. G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light source,” Light. Science & Applications2(5), e66 (2013). [CrossRef]
  3. R. Winston, J. C. Miñano, P. Benítez, N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier, 2005), Chaps. 7-8.
  4. W. A. Parkyn, “The design of illumination lenses via extrinsic differential geometry,” Proc. SPIE3482, 154 (1998). [CrossRef]
  5. H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A19(3), 590–595 (2002). [CrossRef] [PubMed]
  6. V. Oliker, “Geometric and variational methods in optical design of reflecting surfaces with prescribed irradiance properties,” Proc. SPIE5942, 594207 (2005). [CrossRef]
  7. L. Wang, K. Qian, and Y. Luo, “Discontinuous free-form lens design for prescribed irradiance,” Appl. Opt.46(18), 3716–3723 (2007). [CrossRef] [PubMed]
  8. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express16(17), 12958–12966 (2008). [CrossRef] [PubMed]
  9. K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A, Pure Appl. Opt.11(10), 105501 (2009). [CrossRef]
  10. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express18(5), 5295–5304 (2010). [CrossRef] [PubMed]
  11. O. Kückmann, “High power LED arrays: special requirements on packaging technology,” Proc. SPIE6134, 613404 (2006). [CrossRef]
  12. Cree LED products, “Cree XLamp LEDs” (CREE 2013). http://www.cree.com/led-components-and-modules/products/xlamp
  13. P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004). [CrossRef]
  14. O. Dross, R. Mohedano, P. Benítez, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS design methods and real-world applications,” Proc. SPIE5529, 35–47 (2004). [CrossRef]
  15. K. Wang, Y. Han, H. Li, and Y. Luo, “Overlapping-based optical freeform surface construction for extended lighting source,” Opt. Express21(17), 19750–19761 (2013). [CrossRef] [PubMed]
  16. H. R. Ries and R. Winston, “Tailored edge-ray reflectors for illumination,” J. Opt. Soc. Am. A11(4), 1260–1264 (1994). [CrossRef]
  17. A. Rabl and J. M. Gordon, “Reflector design for illumination with extended sources: the basic solutions,” Appl. Opt.33(25), 6012–6021 (1994). [CrossRef] [PubMed]
  18. P. T. Ong, J. M. Gordon, and A. Rabl, “Tailored edge-ray designs for illumination with tubular sources,” Appl. Opt.35(22), 4361–4371 (1996). [CrossRef] [PubMed]
  19. J. M. Gordon and A. Rabl, “Reflectors for uniform far-field irradiance: fundamental limits and example of an axisymmetric solution,” Appl. Opt.37(1), 44–47 (1998). [CrossRef] [PubMed]
  20. P. Goldstein, “Radially symmetric freeform lens design for extended sources,” Proc. SPIE8487, 84870C (2012). [CrossRef]
  21. R. J. Koshel, “Simplex optimization method for illumination design,” Opt. Lett.30(6), 649–651 (2005). [CrossRef] [PubMed]
  22. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended sources,” Proc. SPIE7423, 742302 (2009). [CrossRef]
  23. W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,” Opt. Eng.49(6), 063003 (2010). [CrossRef]
  24. Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express18(9), 9055–9063 (2010). [CrossRef] [PubMed]
  25. W. J. Cassarly, “Iterative reflector design using a cumulative flux compensation approach,” Proc. SPIE7652, 76522L (2010). [CrossRef]
  26. CIE (Commission Internationale de L’Eclairage), Lighting of Work Places Part 1: Indoor (CIE publication 008, Vienna, 2001).
  27. J. Chaves, Introduction to Nonimaging Optics (Taylor & Francis, 2008), Chap. 16.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited