OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 3, Iss. 9 — Oct. 26, 1998
  • pp: 312–314
« Show journal navigation

Prospects of nonlinear microscopy in the next decade: an overview

Peter T. C. So  »View Author Affiliations


Optics Express, Vol. 3, Issue 9, pp. 312-314 (1998)
http://dx.doi.org/10.1364/OE.3.000312


View Full Text Article

Acrobat PDF (26 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A brief overview of nonlinear microscopy in biomedicine is presented. Some of the main results of the contributions of the Focus Issue are also briefly discussed.

© Optical Society of America

1. Introduction

In addition, two-photon microscopy has found novel applications in many areas of biology, biophysics, and medicine. The efficiency of two-photon excitation to discriminate against background fluorescence has allowed the development of two-photon single molecule spectroscopy and two-photon fluorescence correlation spectroscopy [7

7. J. Mertz, C. Xu, and W. W. Webb, “Single-molecule detection by two-photon excited fluorescence”, Opt. Lett. , 20, 2532–2534 (1996). [CrossRef]

, 8

8. K. M. Berland, P. T. C. So, C. Y. Dong, W. W. Mantulin, and E. Gratton, “Scanning Two-Photon Fluctuation Correlation Spectroscopy: Particle Counting Measurement for Detection of Molecular Aggregation,” Biophys. J. 71, 410–420 (1996). [CrossRef] [PubMed]

]. The combination of two-photon excitation with fluorescence spectroscopy enables in vivo monitoring of intracellular biochemistry [9

9. T. French, P. T. C. So, D. J. Weaver Jr, T. Coelho-Sampaio, E. Gratton E, E. W. Voss Jr, and J. Carrero, “Two-photon fluorescence lifetime imaging microscopy of macrophage-mediated antigen processing,” J. Microsc. 185, 339–353 (1997). [CrossRef] [PubMed]

,10

10. J. Sytsma, J. M. Vroom, C. J. De Grauw, and H. C. Gerritsen, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation,” J. Microsc. 191, 39 (1998). [CrossRef]

,11

11. W. M. Yu, P. T. C. So, T. French, and E. Gratton, “Fluorescence Polarization of Cell Membrane - A Two- Photon Scanning Microscopy Approach,” Biophys. J. 70, 626–636 (1996). [CrossRef] [PubMed]

]. The low tissue absorbancy of infrared light and the non-invasive nature of two-photon excitation has facilitated major advances in embryology studies and noninvasive tissue diagnosis [12–15

12. R. G. Summers, D. W. Piston, K. M. Harris, and J. B. Morrill, “The orientation of first cleavage in the sea urchin embryo, Lytechinus variegatus, does not specify the axes of bilateral symmetry,” Dev. Biol. 175, 177–183 (1996). [CrossRef] [PubMed]

]. Also see papers by Mohler and White and So et al. in this issue. A combination of confocal reflected light and two-photon fluorescence imaging has been shown to provide complementary structural information in tissues [16

16. K. H. Kim, P. T. C. So, I. E. Kochevar, B. R. Masters, and E. Gratton, “Two-Photon Fluorescence and Confocal Reflected Light Imaging of Thick Tissue Structures,” SPIE 3260, 46–57 (1998). [CrossRef]

, 17

17. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest Dermatol. 104, 946–952 (1995). [CrossRef] [PubMed]

, see also Masters in this issue]. Realizing that three- and higher-photon excitation in microscope is useful for imaging deep UV chromophores, three- and high photon microscopy has been developed [18

18. J. R. Lakowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, and S. W. Hell, “Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAPI and Hoechst 33342 using three-photon excitation,” Biophys. J. 72, 567–78 (1997). [CrossRef] [PubMed]

,19

19. D. L. Wokosin, V. E. Centonze, J. G. White, S. N. Hird, S. Sepsenwol, G. P. A. Malcolm, G. T. Maker, and A. I. Ferguson, “Multi-photon excitation imaging with an all-solid-state laser,” Proc. of Optical Diagnostics of Living Cells and Biofluids, SPIE 2678, 38–49 (1996).

,20

20. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997). [CrossRef] [PubMed]

]. The unique ability of two-photon microscopy to effect chemical reaction in a subfemtoliter volume has been utilized to activate caged compounds with exquisite spatial precision [21

21. K. Svoboda, W. Denk W, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385,161–165 (1997). [CrossRef] [PubMed]

,22

22. P. Lipp and E. Niggli, “Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in Guinea-pig cardiac myocytes,” J. Physiol. (London) 508, 801–809 (1998). [CrossRef]

]. Realizing that the data rate of a typical scanning microscope is too slow for clinical applications or to observe fast kinetics in cells, video rate two-photon microscope systems have been developed [23

23. G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, W. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181, 253 (1996). [CrossRef] [PubMed]

,24

24. J. Bewersdorf, R. Pick, and S. W. Hell, “Mulitfocal multiphoton microscopy,” Opt. Lett. 23, 655 (1998). [CrossRef]

]. The development of multiphoton imaging systems based on a lower cost, picosecond pulse laser or cw lasers may allow wider adoption of this new technology [25

25. M. J. Booth and S. W. Hell, “Continuous wave excitation two-photon fluorescence microscopy exemplified with the 647-nm ArKr laser line,” J. Microsc. 190, 298–304 (1998). [CrossRef] [PubMed]

]. Finally, realizing that fluorescent labeling of a specimen is sometimes undesirable, nonlinear microscopy based on second and third harmonic light generation has been developed [26

26. M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998). [CrossRef] [PubMed]

]. Also see Squier et al. in this issue.

References and links

1.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]

2.

C. J. R. Sheppard and M. Gu, M., “Image formation in two-photon fluorescence microscopy,” Optik 86, 104–106 (1990).

3.

S. W. Hell, S. Lindek, and E. H. K. Stelzer, “Enhancing the axial resolution in the far-field light microscopy: two-photon 4-Pi confocal fluorescence microscopy,” J. Mod. Opt. 41, 675–81 (1994). [CrossRef]

4.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biologicalnonlinear microscopy,” Proc. Natl. Acad. Sci. USA 93, 10763–10768 (1996). [CrossRef] [PubMed]

5.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D., McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998). [CrossRef] [PubMed]

6.

V. E. Centonze and J. G. White, “Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging,” Biophys J. 75, 2015–2024 (1998). [CrossRef] [PubMed]

7.

J. Mertz, C. Xu, and W. W. Webb, “Single-molecule detection by two-photon excited fluorescence”, Opt. Lett. , 20, 2532–2534 (1996). [CrossRef]

8.

K. M. Berland, P. T. C. So, C. Y. Dong, W. W. Mantulin, and E. Gratton, “Scanning Two-Photon Fluctuation Correlation Spectroscopy: Particle Counting Measurement for Detection of Molecular Aggregation,” Biophys. J. 71, 410–420 (1996). [CrossRef] [PubMed]

9.

T. French, P. T. C. So, D. J. Weaver Jr, T. Coelho-Sampaio, E. Gratton E, E. W. Voss Jr, and J. Carrero, “Two-photon fluorescence lifetime imaging microscopy of macrophage-mediated antigen processing,” J. Microsc. 185, 339–353 (1997). [CrossRef] [PubMed]

10.

J. Sytsma, J. M. Vroom, C. J. De Grauw, and H. C. Gerritsen, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation,” J. Microsc. 191, 39 (1998). [CrossRef]

11.

W. M. Yu, P. T. C. So, T. French, and E. Gratton, “Fluorescence Polarization of Cell Membrane - A Two- Photon Scanning Microscopy Approach,” Biophys. J. 70, 626–636 (1996). [CrossRef] [PubMed]

12.

R. G. Summers, D. W. Piston, K. M. Harris, and J. B. Morrill, “The orientation of first cleavage in the sea urchin embryo, Lytechinus variegatus, does not specify the axes of bilateral symmetry,” Dev. Biol. 175, 177–183 (1996). [CrossRef] [PubMed]

13.

W. A. Wohler, J. S. Simske, E. M. Williams-Masson, J. D. Hardin JD, and J. G. White, “Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis,” Curr. Biol. 8, 1087–1090 (1998). [CrossRef]

14.

W. Piston, B. R. Masters, and W. W. Webb, “Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy,” J. Micros. 178, 20–27, (1995). [CrossRef]

15.

B. R. Masters, P. T. C. So, and E. Gratton, “Multi-Photon Excitation Fluorescence Microscopy and Spectroscopy of In Vivo Human Skin,” Biophys. J. 72, 2405–2412 (1997). [CrossRef] [PubMed]

16.

K. H. Kim, P. T. C. So, I. E. Kochevar, B. R. Masters, and E. Gratton, “Two-Photon Fluorescence and Confocal Reflected Light Imaging of Thick Tissue Structures,” SPIE 3260, 46–57 (1998). [CrossRef]

17.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest Dermatol. 104, 946–952 (1995). [CrossRef] [PubMed]

18.

J. R. Lakowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, and S. W. Hell, “Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAPI and Hoechst 33342 using three-photon excitation,” Biophys. J. 72, 567–78 (1997). [CrossRef] [PubMed]

19.

D. L. Wokosin, V. E. Centonze, J. G. White, S. N. Hird, S. Sepsenwol, G. P. A. Malcolm, G. T. Maker, and A. I. Ferguson, “Multi-photon excitation imaging with an all-solid-state laser,” Proc. of Optical Diagnostics of Living Cells and Biofluids, SPIE 2678, 38–49 (1996).

20.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997). [CrossRef] [PubMed]

21.

K. Svoboda, W. Denk W, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385,161–165 (1997). [CrossRef] [PubMed]

22.

P. Lipp and E. Niggli, “Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in Guinea-pig cardiac myocytes,” J. Physiol. (London) 508, 801–809 (1998). [CrossRef]

23.

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, W. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181, 253 (1996). [CrossRef] [PubMed]

24.

J. Bewersdorf, R. Pick, and S. W. Hell, “Mulitfocal multiphoton microscopy,” Opt. Lett. 23, 655 (1998). [CrossRef]

25.

M. J. Booth and S. W. Hell, “Continuous wave excitation two-photon fluorescence microscopy exemplified with the 647-nm ArKr laser line,” J. Microsc. 190, 298–304 (1998). [CrossRef] [PubMed]

26.

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998). [CrossRef] [PubMed]

OCIS Codes
(170.0180) Medical optics and biotechnology : Microscopy
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy

ToC Category:
Focus Issue: New trends in biomedical microscopy

History
Original Manuscript: October 26, 1998
Published: October 26, 1998

Citation
Peter So, "Prospects of nonlinear microscopy in the next decade: an overview," Opt. Express 3, 312-314 (1998)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-3-9-312


Sort:  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  2. C. J. R., Sheppard, and M. Gu, M., "Image formation in two-photon fluorescence microscopy," Optik 86, 104-106 (1990).
  3. S. W. Hell, S. Lindek and E. H. K. Stelzer, "Enhancing the axial resolution in the far-field light microscopy: two-photon 4-Pi confocal fluorescence microscopy," J. Mod. Opt. 41, 675-81 (1994). [CrossRef]
  4. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, W. W. Webb, "Multiphoton fluorescence excitation: new spectral windows for biologicalnonlinear microscopy," Proc. Natl. Acad. Sci. USA 93, 10763-10768 (1996). [CrossRef] [PubMed]
  5. M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D., McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998). [CrossRef] [PubMed]
  6. V. E. Centonze, J. G. White, "Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging," Biophys J. 75, 2015-2024 (1998). [CrossRef] [PubMed]
  7. J. Mertz, C. Xu and W. W. Webb, "Single-molecule detection by two-photon excited fluorescence", Opt. Lett., 20, 2532-2534 (1996). [CrossRef]
  8. K. M. Berland, P. T. C. So, C. Y. Dong, W. W. Mantulin and E. Gratton, "Scanning Two-Photon Fluctuation Correlation Spectroscopy: Particle Counting Measurement for Detection of Molecular Aggregation," Biophys. J. 71, 410-420 (1996). [CrossRef] [PubMed]
  9. T. French, P. T. C. So, D. J. Weaver Jr, T. Coelho-Sampaio, E. Gratton E, E. W.Voss Jr. and J. Carrero, "Two-photon fluorescence lifetime imaging microscopy of macrophage-mediated antigen processing," J. Microsc. 185, 339-353 (1997). [CrossRef] [PubMed]
  10. J. Sytsma, J. M. Vroom, C. J. De Grauw, H. C. Gerritsen, "Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation," J. Microsc. 191, 39 (1998). [CrossRef]
  11. W. M. Yu, P. T. C. So, T. French and E. Gratton, "Fluorescence Polarization of Cell Membrane - A Two- Photon Scanning Microscopy Approach," Biophys. J. 70, 626-636 (1996). [CrossRef] [PubMed]
  12. R. G. Summers, D. W. Piston, K. M. Harris and J. B. Morrill, "The orientation of first cleavage in the sea urchin embryo, Lytechinus variegatus, does not specify the axes of bilateral symmetry," Dev. Biol. 175, 177-183 (1996). [CrossRef] [PubMed]
  13. W. A. Wohler, J. S. Simske, E. M. Williams-Masson, J. D. Hardin JD and J. G. White, "Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis," Curr. Biol. 8, 1087-1090 (1998). [CrossRef]
  14. W. Piston, B. R. Masters, and W. W. Webb, "Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy," J. Micros. 178, 20-27, (1995). [CrossRef]
  15. B. R. Masters, P. T. C. So, and E. Gratton, "Multi-Photon Excitation Fluorescence Microscopy and Spectroscopy of In Vivo Human Skin," Biophys. J. 72, 2405-2412 (1997). [CrossRef] [PubMed]
  16. K. H. Kim, P. T. C. So, I. E. Kochevar, B. R. Masters and E. Gratton, "Two-Photon Fluorescence and Confocal Reflected Light Imaging of Thick Tissue Structures," SPIE 3260, 46-57 (1998). [CrossRef]
  17. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb and R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest Dermatol. 104, 946-952 (1995). [CrossRef] [PubMed]
  18. J. R. Lakowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano and S. W. Hell, "Time- resolved fluorescence spectroscopy and imaging of DNA labeled with DAPI and Hoechst 33342 using three-photon excitation," Biophys. J. 72, 567-78 (1997). [CrossRef] [PubMed]
  19. D. L. Wokosin, V. E. Centonze, J. G. White, S. N. Hird, S. Sepsenwol, G. P. A. Malcolm, G. T. Maker and A. I. Ferguson, "Multi-photon excitation imaging with an all-solid-state laser," Proc. of Optical Diagnostics of Living Cells and Biofluids, SPIE 2678, 38-49 (1996).
  20. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel and W. W. Webb, "Measuring serotonin distribution in live cells with three-photon excitation," Science 275, 530-532 (1997). [CrossRef] [PubMed]
  21. K. Svoboda, W. Denk W, D. Kleinfeld and D. W. Tank, "In vivo dendritic calcium dynamics in neocortical pyramidal neurons," Nature 385,161-165 (1997). [CrossRef] [PubMed]
  22. P. Lipp and E. Niggli, "Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in Guinea-pig cardiac myocytes," J. Physiol. (London) 508, 801-809 (1998). [CrossRef]
  23. G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, W. H. Wade and B. Athey, "Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system," J. Microsc. 181, 253 (1996). [CrossRef] [PubMed]
  24. J. Bewersdorf, R. Pick, and S. W. Hell, "Mulitfocal multiphoton microscopy," Opt. Lett. 23, 655 (1998). [CrossRef]
  25. M. J. Booth and S. W. Hell, "Continuous wave excitation two-photon fluorescence microscopy exemplified with the 647-nm ArKr laser line," J. Microsc. 190, 298-304 (1998). [CrossRef] [PubMed]
  26. M. Muller, J. Squier, K. R. Wilson and G. J. Brakenhoff, "3D microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266-274 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited