## Experiments on long wavelength (1550nm) “plug and play” quantum cryptography systems

Optics Express, Vol. 4, Issue 10, pp. 383-387 (1999)

http://dx.doi.org/10.1364/OE.4.000383

Acrobat PDF (59 KB)

### Abstract

An interferometric quantum cryptographic system at 1550nm wavelength using gated InGaAs Avalanche Photo Diodes as single-photon receivers is demonstrated for a transmission distance up to 40 km.

© Optical Society of America

1. C. H. Bennett, F. Bessete, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology **5**, 3–23 (1992). [CrossRef]

3. P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fiber using wavelength division multiplexing,” Electron. Lett. **33**, 188–189 (1997). [CrossRef]

4. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play” systems for quantumcryptography,” Appl. Phys. Lett. **70**, 793–795 (1997). [CrossRef]

5. G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Elec. Lett. **34**, 2116–2117 (1998). [CrossRef]

4. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play” systems for quantumcryptography,” Appl. Phys. Lett. **70**, 793–795 (1997). [CrossRef]

6. J.-M. Merolla, Y. Mazurenko, J.-P. Goedgebuer, and W. M. Rhodes, “Single-photon interference in sidebands of phase-modulated light for quantum cryptography,” Phys. Rev. Lett. **82**, 1656–1659 (1999). [CrossRef]

^{1/2}/η), where hν is the photon energy, η the APD quantum efficiency and R the dark count rate) as function of temperature. The operating temperature of the APD is adjusted with a heater in the cryostat. Interestingly, a good operating temperature is found around 210Kelvin (- 60 degrees Celsius), which implies that a simple Peltier cooling is possible. It is to be noted that Germanium APDs for 1300nm have to be cooled to 77Kelvin in order to have a good performance, making them less attractive for practical system implementations. Our best performance was obtained with an InGaAs APD C306444EJT-07 manufactured by EG&G. However, other work [7

7. G. Ribordy, J. T. Gautier, H. Zbinden, and N. Gisin. “Performance of InGaAs/InP avalanche photodiodes asgated-mode photon counters,” Appl. Opt. **37**, 2272–2277 (1998). [CrossRef]

_{d}per pulse of P

_{d}=2

^{*}10

^{-4}in the counter.

_{A}. For simplicity, we have here only implemented the so-called B92 protocol [4

4. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play” systems for quantumcryptography,” Appl. Phys. Lett. **70**, 793–795 (1997). [CrossRef]

8. C. H. Bennett, “Quantum cryptography using any two non-orthogonal states,” Phys. Rev. Lett. **68**3121–3124 (1992). [CrossRef] [PubMed]

**70**, 793–795 (1997). [CrossRef]

8. C. H. Bennett, “Quantum cryptography using any two non-orthogonal states,” Phys. Rev. Lett. **68**3121–3124 (1992). [CrossRef] [PubMed]

9. H. Zbinden, H. Bechman-Pasquinucci, N. Gisin, and G. Ribordy, “Quantum cryptography,” Appl. Phys.B **67**, 743–748 (1998). [CrossRef]

_{c}(using a pulse with many photons) of V

_{c}= 98, 96 and 90 % were obtained for a propagation of 10, 30 and 40km respectively. The decrease of visibilities can be explained by timing and alignment difficulties for longer distances. The classical visibility basically allows us to separate the errors due to a non-perfect extinction ratio in the interferometric system, from the false counts to dark counts in the detectors. To experimentally infer the total system Quantum Bit Error Rate (QBER), i.e., the error rate before error correction, we measure the counts per second for constructive (I

_{max}) and destructive interference (I

_{min}). The QBER is then obtained [9

9. H. Zbinden, H. Bechman-Pasquinucci, N. Gisin, and G. Ribordy, “Quantum cryptography,” Appl. Phys.B **67**, 743–748 (1998). [CrossRef]

_{min}/ (I

_{max+}I

_{min}) of 3, 6 and 9% for a propagation of 10, 30 and 40km respectively. These error rates are below the 15% limit, above which error correction and privacy amplification cannot be used [1

1. C. H. Bennett, F. Bessete, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology **5**, 3–23 (1992). [CrossRef]

9. H. Zbinden, H. Bechman-Pasquinucci, N. Gisin, and G. Ribordy, “Quantum cryptography,” Appl. Phys.B **67**, 743–748 (1998). [CrossRef]

**67**, 743–748 (1998). [CrossRef]

1. C. H. Bennett, F. Bessete, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology **5**, 3–23 (1992). [CrossRef]

5. G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Elec. Lett. **34**, 2116–2117 (1998). [CrossRef]

## Acknowledgements:

## References and Links

1. | C. H. Bennett, F. Bessete, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology |

2. | R. Hughes, G. L. Morgan, and C. G. Peterson, “Practical quantum key distribution over a 48-km optical fiber network,” Los Alamos e-print archive quant-ph/9904038, submitted to J. of Mod. Opt. |

3. | P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fiber using wavelength division multiplexing,” Electron. Lett. |

4. | A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play” systems for quantumcryptography,” Appl. Phys. Lett. |

5. | G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ‘plug & play’ quantum key distribution,” Elec. Lett. |

6. | J.-M. Merolla, Y. Mazurenko, J.-P. Goedgebuer, and W. M. Rhodes, “Single-photon interference in sidebands of phase-modulated light for quantum cryptography,” Phys. Rev. Lett. |

7. | G. Ribordy, J. T. Gautier, H. Zbinden, and N. Gisin. “Performance of InGaAs/InP avalanche photodiodes asgated-mode photon counters,” Appl. Opt. |

8. | C. H. Bennett, “Quantum cryptography using any two non-orthogonal states,” Phys. Rev. Lett. |

9. | H. Zbinden, H. Bechman-Pasquinucci, N. Gisin, and G. Ribordy, “Quantum cryptography,” Appl. Phys.B |

**OCIS Codes**

(060.2330) Fiber optics and optical communications : Fiber optics communications

(270.0270) Quantum optics : Quantum optics

**ToC Category:**

Research Papers

**History**

Original Manuscript: February 26, 1999

Published: May 10, 1999

**Citation**

M. Bourennane, F. Gibson, Anders Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, and E. Sundberg, "Experiments on long wavelength (1550 nm) "plug and play" quantum cryptography systems," Opt. Express **4**, 383-387 (1999)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-4-10-383

Sort: Journal | Reset

### References

- C. H. Bennett, F. Bessete, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-23 (1992). [CrossRef]
- R. Hughes, G. L. Morgan, C. G. Peterson, "Practical quantum key distribution over a 48-km optical fiber network," Los Alamos e-print archive quant-ph/9904038, submitted to J. of Mod. Opt.
- P. D. Townsend, "Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fiber using wavelength division multiplexing," Electron. Lett. 33, 188-189 (1997). [CrossRef]
- A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden and N. Gisin, "Plug and play" systems for quantum cryptography," Appl. Phys. Lett. 70, 793-795 (1997). [CrossRef]
- G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard and H. Zbinden, "Automated plug & play quantum key distribution," Elec. Lett. 34, 2116-2117 (1998). [CrossRef]
- J.-M. Merolla, Y. Mazurenko, J.-P. Goedgebuer and W. M. Rhodes, "Single-photon interference in sidebands of phase-modulated light for quantum cryptography," Phys. Rev. Lett. 82, 1656-1659 (1999). [CrossRef]
- G. Ribordy, J. T. Gautier, H. Zbinden and N. Gisin. "Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters," Appl. Opt. 37, 2272-2277 (1998). [CrossRef]
- C. H. Bennett, "Quantum cryptography using any two non-orthogonal states," Phys. Rev. Lett. 68 3121-3124 (1992). [CrossRef] [PubMed]
- H. Zbinden, H. Bechman-Pasquinucci, N. Gisin and G. Ribordy, "Quantum cryptography," Appl. Phys.B 67, 743-748 (1998). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.