Recovery of piecewise constant coefficients in optical diffusion tomography
Optics Express, Vol. 7, Issue 13, pp. 468-480 (2000)
http://dx.doi.org/10.1364/OE.7.000468
Acrobat PDF (933 KB)
Abstract
In optical diffusion tomography the reconstruction of the absorbtion and scattering coefficients is conventionally carried out in a pixel basis. The resulting number of unknowns makes the associated inverse problem severely ill-posed. We have recently proposed a new approach in which the goal is to reconstruct boundaries of piece-wise constant tissue regions as well as the diffusion and absorption coefficients within these regions. This method assumes that there is a feasible initial guess on the domain boundaries. In this paper we propose an extension to this approach in which the initial estimate for the boundary and coefficient estimation is extracted from a conventional pixel based reconstruction using standard image processing operations. In the computation of the pixel based reconstruction the output least squares problem is augmented with an approximated total variation prior. The performance of the proposed approach is evaluated using simulated frequency domain data. It is shown that since the total variation type approach favors domains with constant coefficients it is well suited for the fixing of the starting point for the actual boundary and coefficient reconstruction method.
© Optical Society of America
1 Introduction
1. V. Kolehmainen, S. R. Arridge, W. R. B. Lionheart, M. Vauhkonen, and J. P. Kaipio, “Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data,” Inverse Problems 15, 1375–1391 (1999). [CrossRef]
3. D. Dobson and F. Santosa, “An image enhancement technique for electrical impedance tomography,” Inverse Problems 10, 317–334 (1994). [CrossRef]
5. K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total variation minimization,” Appl. Opt. 35, 3447–3458 (1996). [CrossRef] [PubMed]
1. V. Kolehmainen, S. R. Arridge, W. R. B. Lionheart, M. Vauhkonen, and J. P. Kaipio, “Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data,” Inverse Problems 15, 1375–1391 (1999). [CrossRef]
2 Forward Model
2.1 Representation of the boundaries {Cℓ}
1. V. Kolehmainen, S. R. Arridge, W. R. B. Lionheart, M. Vauhkonen, and J. P. Kaipio, “Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data,” Inverse Problems 15, 1375–1391 (1999). [CrossRef]
2.2 Diffusion approximation to the RTE
7. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999). [CrossRef]
8. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef] [PubMed]
9. J. P. Kaltenbach and M. Kaschke, “Frequency- and Time-domain Modelling of Light Transport in Random Media,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, and P. van der Zee, eds., (SPIE, Bellingham, WA, 1993), pp. 65–86.
10. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. T. Bosch, “Scattering and Absorption of Turbid Materials Determined from Reflection Measurements. Part 1: Theory,” Appl. Opt. 22, 2456–2462 (1983). [CrossRef] [PubMed]
7. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999). [CrossRef]
8. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef] [PubMed]
11. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
1. V. Kolehmainen, S. R. Arridge, W. R. B. Lionheart, M. Vauhkonen, and J. P. Kaipio, “Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data,” Inverse Problems 15, 1375–1391 (1999). [CrossRef]
12. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A Finite Element Approach for Modeling Photon Transport in Tissue,” Med. Phys. 20, 299–309 (1993). [CrossRef] [PubMed]
8. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef] [PubMed]
13. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical Image Reconstruction Using Frequency-domain Data: Simulations and Experiments,” J. Opt. Soc. Am. A 13, 253–266 (1995). [CrossRef]
3 Inverse Problem
3.1 Reconstruction of the best fitting constants µ ˜ _{a,0} and κ ˜ _{0}
14. S. R. Arridge, M. Hiraoka, and M. Schweiger, “Statistical Basis for the Determination of Optical Pathlength in Tissue,” Phys. Med. Biol. 40, 1539–1558 (1995). [CrossRef] [PubMed]
15. M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999). [CrossRef] [PubMed]
3.2 Reconstruction in a local pixel basis with the total variation regularization
3. D. Dobson and F. Santosa, “An image enhancement technique for electrical impedance tomography,” Inverse Problems 10, 317–334 (1994). [CrossRef]
3. D. Dobson and F. Santosa, “An image enhancement technique for electrical impedance tomography,” Inverse Problems 10, 317–334 (1994). [CrossRef]
5. K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total variation minimization,” Appl. Opt. 35, 3447–3458 (1996). [CrossRef] [PubMed]
16. A. Fiacco and G. McCormick, Nonlinear Programming (SIAM, 1990). [CrossRef]
7. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999). [CrossRef]
16. A. Fiacco and G. McCormick, Nonlinear Programming (SIAM, 1990). [CrossRef]
3.3 Shape estimation
1. V. Kolehmainen, S. R. Arridge, W. R. B. Lionheart, M. Vauhkonen, and J. P. Kaipio, “Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data,” Inverse Problems 15, 1375–1391 (1999). [CrossRef]
4 Results
7. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999). [CrossRef]
14. S. R. Arridge, M. Hiraoka, and M. Schweiger, “Statistical Basis for the Determination of Optical Pathlength in Tissue,” Phys. Med. Biol. 40, 1539–1558 (1995). [CrossRef] [PubMed]
19. M. Cheney, D. Isaacson, J. Newell, S. Simske, and J. Goble, “NOSER: An algorithm for solving the inverse conductivity problem,” Int J Imaging Systems and Technology 2, 66–75 (1990). [CrossRef]
16. A. Fiacco and G. McCormick, Nonlinear Programming (SIAM, 1990). [CrossRef]
22. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math. 11, 431–441 (1963). [CrossRef]
5 Conclusions
1. V. Kolehmainen, S. R. Arridge, W. R. B. Lionheart, M. Vauhkonen, and J. P. Kaipio, “Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data,” Inverse Problems 15, 1375–1391 (1999). [CrossRef]
24. M. Schweiger and S. R. Arridge, “Comparison of 2D and 3D reconstruction algorithms in Optical Tomography,” Appl. Opt. 37, 7419–7428 (1998). [CrossRef]
24. M. Schweiger and S. R. Arridge, “Comparison of 2D and 3D reconstruction algorithms in Optical Tomography,” Appl. Opt. 37, 7419–7428 (1998). [CrossRef]
25. S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, and D. T. Delby, “A method for three-dimensional time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000). [CrossRef]
26. C. Brechbühler, G. Gerig, and O. Kübler, “Parametrization of closed surfaces for 3-D shape description,” Computer Vision and Image Understanding 61, 154–170 (1995). [CrossRef]
27. A. Kelemen, G. Szekely, and G. Gerig, “Three-dimensional model-based segmentation,” IEEE Trans Med Imaging 18, 828–839 (1995). [CrossRef]
Acknowledgements
References and links
1. | V. Kolehmainen, S. R. Arridge, W. R. B. Lionheart, M. Vauhkonen, and J. P. Kaipio, “Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data,” Inverse Problems 15, 1375–1391 (1999). [CrossRef] |
2. | V. Kolehmainen, S. R. Arridge, M. Vauhkonen, and J. P. Kaipio, “Simultaneous reconstruction of internal tissue region boundaries and coefficients in optical diffusion tomography,” Phys Med Biol (2000), in Press. |
3. | D. Dobson and F. Santosa, “An image enhancement technique for electrical impedance tomography,” Inverse Problems 10, 317–334 (1994). [CrossRef] |
4. | J. P. Kaipio, V. Kolehmainen, E. Somersalo, and M. Vauhkonen, “Statistical inversion methods in electrical impedance tomography,” Inverse Problems (2000), in Press. |
5. | K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total variation minimization,” Appl. Opt. 35, 3447–3458 (1996). [CrossRef] [PubMed] |
6. | M. C. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley, New York, 1967). |
7. | S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999). [CrossRef] |
8. | M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef] [PubMed] |
9. | J. P. Kaltenbach and M. Kaschke, “Frequency- and Time-domain Modelling of Light Transport in Random Media,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, and P. van der Zee, eds., (SPIE, Bellingham, WA, 1993), pp. 65–86. |
10. | R. A. J. Groenhuis, H. A. Ferwerda, and J. J. T. Bosch, “Scattering and Absorption of Turbid Materials Determined from Reflection Measurements. Part 1: Theory,” Appl. Opt. 22, 2456–2462 (1983). [CrossRef] [PubMed] |
11. | R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef] |
12. | S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A Finite Element Approach for Modeling Photon Transport in Tissue,” Med. Phys. 20, 299–309 (1993). [CrossRef] [PubMed] |
13. | H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical Image Reconstruction Using Frequency-domain Data: Simulations and Experiments,” J. Opt. Soc. Am. A 13, 253–266 (1995). [CrossRef] |
14. | S. R. Arridge, M. Hiraoka, and M. Schweiger, “Statistical Basis for the Determination of Optical Pathlength in Tissue,” Phys. Med. Biol. 40, 1539–1558 (1995). [CrossRef] [PubMed] |
15. | M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999). [CrossRef] [PubMed] |
16. | A. Fiacco and G. McCormick, Nonlinear Programming (SIAM, 1990). [CrossRef] |
17. | S. Järvenpää, “A finite element model for the inverse conductivity problem,”, Phil. Lic. thesis, University of Helsinki, Finland (1996). |
18. | V. Kolehmainen, E. Somersalo, P. J. Vauhkonen, M. Vauhkonen, and J. P. Kaipio, “A Bayesian approach and total variation priors in 3D electrical impedance tomography,” In Proc 20th Ann Int Conf IEEE Eng Med Biol Soc, pp. 1028–1031 (Hong Kong, China, 1998). |
19. | M. Cheney, D. Isaacson, J. Newell, S. Simske, and J. Goble, “NOSER: An algorithm for solving the inverse conductivity problem,” Int J Imaging Systems and Technology 2, 66–75 (1990). [CrossRef] |
20. | J. S. Lim, Two-dimensional signal and image processing (Prentice Hall, Englewood Cliffs, NJ, 1990). |
21. | Matlab: Image Processing toolbox user’s guide, 2 ed., The MathWorks Inc., 24 Prime Park Way, Natick, MA 01760-1500, USA. |
22. | D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math. 11, 431–441 (1963). [CrossRef] |
23. | M. E. Kilmer, E. L. Miller, D. A. Boas, D. H. Brooks, C. A. DiMarzio, and R. J. Gaudette, “Direct object localization and characterization from diffuse photon density data,” Proceedings of the SPIE Photonics West Meeting, Jan. 1999. |
24. | M. Schweiger and S. R. Arridge, “Comparison of 2D and 3D reconstruction algorithms in Optical Tomography,” Appl. Opt. 37, 7419–7428 (1998). [CrossRef] |
25. | S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, and D. T. Delby, “A method for three-dimensional time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000). [CrossRef] |
26. | C. Brechbühler, G. Gerig, and O. Kübler, “Parametrization of closed surfaces for 3-D shape description,” Computer Vision and Image Understanding 61, 154–170 (1995). [CrossRef] |
27. | A. Kelemen, G. Szekely, and G. Gerig, “Three-dimensional model-based segmentation,” IEEE Trans Med Imaging 18, 828–839 (1995). [CrossRef] |
OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
ToC Category:
Focus Issue: Diffuse optical tomography
History
Original Manuscript: October 16, 2000
Published: December 18, 2000
Citation
V. Kolehmainen, M. Vauhkonen, Jari Kaipio, and Simon Arridge, "Recovery of piecewise constant coefficients in optical diffusion tomography," Opt. Express 7, 468-480 (2000)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-13-468
Sort: Journal | Reset
References
- V. Kolehmainen, S. R. Arridge, W. R. B. Lionheart, M. Vauhkonen, and J. P. Kaipio, "Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data," Inverse Problems 15, 1375-1391 (1999). [CrossRef]
- V. Kolehmainen, S. R. Arridge, M. Vauhkonen, and J. P. Kaipio, "Simultaneous reconstruction of internal tissue region boundaries and coefficients in optical diffusion tomography," Phys Med Biol (2000), in Press.
- D. Dobson and F. Santosa, "An image enhancement technique for electrical impedance tomography," Inverse Problems 10, 317-334 (1994). [CrossRef]
- J. P. Kaipio, V. Kolehmainen, E. Somersalo, and M. Vauhkonen, "Statistical inversion methods in electrical impedance tomography," Inverse Problems (2000), in Press.
- K. D. Paulsen and H. Jiang, "Enhanced frequency-domain optical image reconstruction in tissues through total variation minimization," Appl. Opt. 35, 3447-3458 (1996). [CrossRef] [PubMed]
- M. C. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley, New York, 1967).
- S. R. Arridge, "Optical tomography in medical imaging," Inverse Problems 15, R41-R93 (1999). [CrossRef]
- M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element model for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995). [CrossRef] [PubMed]
- J. P. Kaltenbach and M. Kaschke, "Frequency- and Time-domain Modelling of Light Transport in Random Media," in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, and P. van der Zee, eds., (SPIE, Bellingham, WA, 1993), pp. 65-86.
- R. A. J. Groenhuis, H. A. Ferwerda, and J. J. T. Bosch, "Scattering and Absorption of Turbid Materials Determined from Reflection Measurements. Part 1: Theory," Appl. Opt. 22, 2456-2462 (1983). [CrossRef] [PubMed]
- R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994). [CrossRef]
- S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A Finite Element Approach for Modeling Photon Transport in Tissue," Med. Phys. 20, 299-309 (1993). [CrossRef] [PubMed]
- H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, "Optical Image Reconstruction Using Frequency-domain Data: Simulations and Experiments," J. Opt. Soc. Am. A 13, 253-266 (1995). [CrossRef]
- S. R. Arridge, M. Hiraoka, and M. Schweiger, "Statistical Basis for the Determination of Optical Pathlength in Tissue," Phys. Med. Biol. 40, 1539-1558 (1995). [CrossRef] [PubMed]
- M. Schweiger and S. R. Arridge, "Application of temporal filters to time resolved data in optical tomography," Phys. Med. Biol. 44, 1699-1717 (1999). [CrossRef] [PubMed]
- A. Fiacco and G. McCormick, Nonlinear Programming (SIAM, 1990). [CrossRef]
- S. Järvenpää, "A finite element model for the inverse conductivity problem,", Phil. Lic. thesis, University of Helsinki, Finland (1996).
- V. Kolehmainen, E. Somersalo, P. J. Vauhkonen, M. Vauhkonen, and J. P. Kaipio, "A Bayesian approach and total variation priors in 3D electrical impedance tomography," In Proc 20th Ann Int Conf IEEE Eng Med Biol Soc, pp. 1028-1031 (Hong Kong, China, 1998).
- M. Cheney, D. Isaacson, J. Newell, S. Simske, and J. Goble, "NOSER: An algorithm for solving the inverse conductivity problem," Int J Imaging Systems and Technology 2, 66-75 (1990). [CrossRef]
- J. S. Lim, Two-dimensional signal and image processing (Prentice Hall, Englewood Cliffs, NJ, 1990).
- Matlab: Image Processing toolbox user's guide, 2 ed., The MathWorks Inc., 24 Prime Park Way, Natick, MA 01760-1500, USA.
- D. W. Marquardt, "An algorithm for least-squares estimation of nonlinear parameters," J. Soc. Indust. Appl. Math. 11, 431-441 (1963). [CrossRef]
- M. E. Kilmer, E. L. Miller, D. A. Boas, D. H. Brooks, C. A. DiMarzio and R. J. Gaudette, "Direct object localization and characterization from diffuse photon density data," Proceedings of the SPIE Photonics West Meeting, Jan. 1999.
- M. Schweiger and S. R. Arridge, "Comparison of 2D and 3D reconstruction algorithms in Optical Tomography," Appl. Opt. 37, 7419-7428 (1998). [CrossRef]
- S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, and D. T. Delby, "A method for three-dimensional time-resolved optical tomography," Int. J. Imaging Syst. Technol. 11, 2-11 (2000). [CrossRef]
- C. Brechbühler, G. Gerig, and O. Kübler, "Parametrization of closed surfaces for 3-D shape description," Computer Vision and Image Understanding 61, 154-170 (1995). [CrossRef]
- A. Kelemen, G. Szekely, and G. Gerig, "Three-dimensional model-based segmentation," IEEE Trans Med Imaging 18, 828-839 (1995). [CrossRef]
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
Multimedia
Multimedia Files | Recommended Software |
» Media 1: GIF (349 KB) | QuickTime |
« Previous Article | Next Article »
OSA is a member of CrossRef.