OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 8, Iss. 12 — Jun. 2, 2001
  • pp: 655–663
« Show journal navigation

Plasmon resonant coupling in metallic nanowires

Jörg P. Kottmann and Olivier J.F. Martin  »View Author Affiliations


Optics Express, Vol. 8, Issue 12, pp. 655-663 (2001)
http://dx.doi.org/10.1364/OE.8.000655


View Full Text Article

Acrobat PDF (248 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the plasmon resonances of interacting silver nanowires with a 50 nm diameter. Both non–touching and intersecting configurations are investigated. While individual cylinders exhibit a single plasmon resonance, we observe much more complex spectra of resonances for interacting structures. The number and magnitude of the different resonances depend on the illumination direction and on the distance between the particles. For very small separations, we observe a dramatic field enhancement between the particles, where the electric field amplitude reaches a hundredfold of the illumination. A similar enhancement is observed in the grooves created in slightly intersecting particles. The topology of these different resonances is related to the induced polarization charges. The implication of these results to surface enhanced Raman scattering (SERS) are discussed.

© Optical Society of America

Introduction

Over the last twenty years, much interest has been devoted to metallic nano–structures, and in particular to the strong electromagnetic enhancement they can provide via the excitations of plasmon resonances. With the rapid advances in the fabrication of very small particles [1

1. K. Bromann, C. Félix, H . Brune, W. Harbich, R. Monot, J. Buttet, and K. Kern,“Con trolled Deposition of Size-Selected Silver Nanoclusters,” Science 274, 956–958 (1996). [CrossRef] [PubMed]

, 2

2. K. Abe, T. Hanada, Y . Yoshida, N . Tanigaki, H . Takiguchi, H . Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase,“Two-dimensional array of silver nanoparticles,” Thin Solid Films 327329, 524–527 (1997). [CrossRef]

, 3

3. J. C. Hulteen, D . A. Treichel, M. T. Smith, M . L. Duval, T . R. Jensen, and R. P. van Duyne,“N anosphere Lithography: Size-Tunable Silver Nanoparticles and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999). [CrossRef]

] and nanowires [4

4. D. Y. Petrovykh, F. J. Himpsel, and T. Jung, “Width distribution of nanowires grown by step decoration,” Surf. Science 407, 189–199 (1998). [CrossRef]

, 5

5. G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin,“Car bon nanotubule membranes for electrochemical energy storage and production,” Nature 393, 346–349 (1998). [CrossRef]

, 6

6. A. P. Li, F. Müller, and U. Gösele,“Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina,” Electrochem. Solid-State Lett. 3, 131–134 (2000). [CrossRef]

], their optical properties are now used in a wide range of applications, including biosensors [7

7. R. Elghanian, J. J. Storhoff, R . C. Mucic, R . L. Letsinger, and C. A. Mirkin, “Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles,” Science 277, 1078–1081 (1997). [CrossRef] [PubMed]

, 8

8. L. A. Lyon, M . D. Musick, and M. J. Natan, “Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing,” Anal. Chem. 70, 5177–5183 (1998). [CrossRef] [PubMed]

, 9

9. S. Schultz, D. R. Smith, J . J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000). [CrossRef] [PubMed]

, 10

10. C. Viets and W. Hill,“Single-fibre surface-enhanced Raman sensors with angled tips,” J. Raman Spectrosc. 31, 625–631 (2000). [CrossRef]

], near–field microscopy [11

11. T. J. Silva and S. Schultz,“A scanning near-field optical microscope for the imaging of magnetic domains in reflection,” Rev. Sci. Inst. 67, 715–725 (1996). [CrossRef]

, 12

12. R. M. Stöckle, Y . D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000). [CrossRef]

, 13

13. J. P. Kottmann and O. J. F,“Retar dation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. in press (2001).

] and new optical devices [14

14. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998). [CrossRef]

, 15

15. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999). [CrossRef]

, 16

16. J. R. Krennet al.,“Squeezing the optical near–field by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999). [CrossRef]

, 17

17. J. Tominaga, C. Mihalcea, D. Büchel, H . Fukuda, T. Nakano, N . Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78, 2417–2419 (2001). [CrossRef]

]. Since the plasmons are associated with large electromagnetic fields near the particle surface, they play a key role in surface enhanced Raman scattering (SERS) [18

18. M. Moskovits,“Sur face-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985). [CrossRef]

]. For specific configurations, this enhancement can be so large that it allows single molecule detection [19

19. K. Kneipp, Y . Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld,“Si ngle molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1670 (1997). [CrossRef]

, 20

20. S. Nie and S. R. Emory,“Pr obing single molecules and single nanoparticles by surface-enhanced Ramsn scattering,” Science 275, 1102–1106 (1997). [CrossRef] [PubMed]

, 21

21. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson,“Sp ectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999). [CrossRef]

].

Recently we demonstrated that nanowires with a non–regular cross–section have a very complex spectrum of plasmon resonances: while a cylindrical particle exhibits one resonance and an elliptical particle two, we observed that five or more distinct resonances can be excited in a triangular nanoparticle [22

22. J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett. in press, (2001).

]. A dramatic near–field enhancement, with amplitude several hundred times that of the illumination field was also observed at the vicinity of these non–regular particles [23

23. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of Silver nanoparticles,” Optics Express 6, 213–219 (2000). [CrossRef] [PubMed]

]. This enhancement was orders of magnitudes larger than that observed on regular particles. For example, the field amplitude at the vicinity of a 20 nm triangular particle can exceed 400 times the illumination amplitude, while this enhancement is only 10 for a cylindrical particle with the same size [24

24. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a non–regular cross–section,” Phys. Rev. B submitted (2001).

]. Raman enhancement being proportional to the fourth power of the amplitude enhancement [18

18. M. Moskovits,“Sur face-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985). [CrossRef]

], our results indicate Raman enhancement in excess of 1012 for non–regular particles, while a cylindrical particle provides a mere 104 enhancement.

The objective of this paper is to demonstrate that cylindrical particles, although harmless individually, can also provide strong enhancement when they are coupled together. Infinite arrays of particles have been studied theoretically [25

25. F. J. García-Vidal and J. B. Pendry, “Col lective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996). [CrossRef] [PubMed]

], while long chains of nanoparticles in the 200 nm range have been investigated experimentally [15

15. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999). [CrossRef]

, 16

16. J. R. Krennet al.,“Squeezing the optical near–field by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999). [CrossRef]

]. We shall concentrate here on a pair of interacting particles and illustrate the different coupling mechanisms that can occur. Some aspects of this coupling in spherical metal particles have been investigated by others [26

26. P. K. Aravind, A . Nitzan, and H. Metiu,“The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres,” Surf. Sci. 110, 189–204 (1981). [CrossRef]

, 27

27. A. I. Vanin,“Sur face-amplified Raman scattering of light by molecules adsorbed on groups of spherical particles,” J. Appl. Spectrosc.62 (1995).

, 28

28. N. Félidj, J . Aubard, and G. Lévi,“Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999). [CrossRef]

, 29

29. H. Xu, J . Aizpurua, M. Käll, and P. Apell,“Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 1–7 (2000). [CrossRef]

].

In Sec. 2 we briefly outline our model. Results are presented in Sec. 3 and we summarize in Sec. 4.

2. Model

Fig. 1. SCS of two 50 nm diameter cylinders with a 5 nm separation. Two different illumination directions, in dicated by the arrows in the inset, are considered. The SCS of a single cylinder is given for comparison (black).

Our numerical results are based on the finite elements method described in Ref. [37

37. J. P. Kottmann and O. J. F. Martin,“Accurate solution of the volume integral equation for high permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000). [CrossRef]

]. With this technique, we are able to accurately study the plasmon resonances of scatterers with an arbitrary shape [24

24. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a non–regular cross–section,” Phys. Rev. B submitted (2001).

]. Since we use a discretization in direct space, we can also investigate any arrangement of multiple scatterers, as is the case in the present work. Each cylinder section is discretized with about 1’500 triangular elements. A detailed convergence study of our numerical scheme is given in Ref. [37

37. J. P. Kottmann and O. J. F. Martin,“Accurate solution of the volume integral equation for high permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000). [CrossRef]

].

3. Results

Throughout the entire paper, we consider cylinders illuminated with a plane wave propagating in the plane of the figure, with the electric field in this plane as well (transverse electric polarization). All cylinders have a 50 nm diameter.

We first study two cylinders with a separation distance d=5nm. In Fig. 1 we show the scattering cross section (SCS) as a function of the wavelength λ for illumination along and normal to the major axis, the axis joining the cylinder centers (the illumination direction refers to the propagation direction of the illumination field; the incident electric field is therefore normal to this direction). The SCS of an individual 50 nm cylinder is also shown: in that case a single resonance is excited at λ=344 nm. This resonance, although slightly blue shifted to λ=340 nm, still exists in the coupled system for both illumination directions (Fig. 1). Note however that for the coupled system this resonance has the same magnitude as for the individual cylinder, although two cylinders are now scattering [especially for illumination from the top, where the incident field sees a broader structure, one would expect a larger SCS (Fig. 1)].

For illumination along the major axis we observe an additional resonance at λ=372 nm. However, Fig. 1 clearly demonstrates that the coupling effect is much stronger for incidence normal to the major axis (i.e. when the incident electric field is along the major axis). In that case we observe a rather broad resonance at λ=380 nm with a SCS amplitude much larger than that of the individual cylinder (λ=344 nm).

Fig. 2. Field amplitude distribution as a function of the illumination wavelength (indicated on the top of each frame) for (a) an individual cylinder (277KB) and (b), (c) two interacting cylinders with a 5 nm separation (321 and 381KB). The cylinders have 50 nm diameter. For the interacting cylinders two different illumination directions, indicated by the arrow, are considered. Front pictures: Corresponding main resonances (a) λ=344 nm,(b) λ=380 nm and (c) λ=374nm
Fig. 3. Polarization charge distribution at the main resonance for (a) a single cylinder and (b),(c) two interacting cylinders with a separation d=5nm. Illumination direction as indicated. The cylinders have a 50 nm diameter. A different colorscale is used for each part: the charge density is much higher for the coupled cylinders (b) and (c) than for the single cylinder (a).

The movies Figs. 2(a)-(c) show the electromagnetic near–field amplitude distribution corresponding to Fig. 1, as a function of the wavelength. For the single cylinder, the field distribution is very homogeneous, the field amplitude reaching about 8 (in units of the illumination amplitude) at the resonance (λ=344 nm), and decreasing for larger wavelengths [Fig. 2(a)].

For the illumination normal to the major axis, the field amplitude in the interacting cylinders is homogeneous and rather weak, up to the single cylinder resonance wavelength [λ=344 nm, Fig. 2(b)]. For larger wavelengths the coupling becomes quite strong, leading to a large field in the gap between the particles. There the field amplitude reaches almost 40 at the resonance (λ=380 nm).

A similar enhancement is observed for the other illumination direction, with a field amplitude of 35 between the particles. The field distribution in the gap is however very different from the other illumination direction: The field now vanishes in the middle of the gap [Fig. 2(c)]. Retardation is essential for this resonance, as will be discussed later.

In Fig. 3 we show the polarization charge distribution associated with the main resonances reported in Fig. 2. This polarization charge distribution, which is given by the divergence of the electric field, oscillates in time: half a period later, the opposite charge distribution is observed [38

38. J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Phys. 2, 27.1–27.9 (2000). [CrossRef]

]. The distributions in Fig. 3 correspond to a specific moment in time, when the magnitude of the instantaneous electric field vector is maximum in the gap. The moment when the near–field amplitude is maximum does not coincide with the moment when the illumination field is maximum, since – at resonance – there is a phase shift between the illumination and the particle response [38

38. J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Phys. 2, 27.1–27.9 (2000). [CrossRef]

].

The polarization charge distribution in the single cylinder is symmetrical with respect to the illumination direction, with plus charges on one side of the particle and minus charges on the other side [Fig. 3(a)]. At the main resonance for the interacting cylinders illuminated from the top, polarization charge of opposite signs are confined on the sides of the gap [Fig. 3(b)]. Each particle remains of course neutral and a same amount of opposite charges is distributed on the remaining of the particle. Both cylinders are in phase, i.e. their charges distributions have negative charges on the left of the particle and positive charges on the right [Fig. 3(b)].

The polarization charge distribution at the main resonance for the other illumination direction is completely different [Fig. 3(c)]. In that case, both cylinders are out of phase, with respect to the illumination direction: the first (left) cylinder has ± charges, whereas the second (right) has ∓ charges [Fig. 3(c)]. This leads to a quadrupole–like charge distribution around the gap between the particles, which explains that the field vanishes in the middle of the gap, as observed in Fig. 2(c). This peculiar resonance can only be observed in particles large enough so that both cylinders are driven out of phase by the incident field. This coupling mechanism is therefore governed by retardation. It was investigated in Ref. [13

13. J. P. Kottmann and O. J. F,“Retar dation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. in press (2001).

], where we show that for silver cylinders, this coupled mode occurs only for particle diameters larger than 30 nm.

Fig. 4. Amplitude distribution for two interacting 50nm cylinders for different separation distances d (negative distances correspond to intersecting cylinders) (283KB). The corresponding main resonance wavelength is shown.

We now study the influence of the separation distance d on the plasmon resonant coupling. We shall focus on the illumination direction normal to the major axis as it provides the strongest coupling, particularly for small separation distances.

Figure 4 shows the field distribution for different separation distances d, at the corresponding main resonance wavelength (i.e. not at a constant wavelength). For a separation distance equal to the diameter, there is almost no coupling, whereas the field enhancement becomes very large for d≤5 nm. Around d=2 nm the field amplitude in the gap exceeds 200 times that of the illumination field.

Negative separation distances in Fig. 4 correspond to intersecting cylinders. In that case we observe a large amplitude enhancement in the grooves, exceeding 100 times the illumination amplitude. Similar enhancement has also been obtained by García-Vidal et al. for an infinite array of cylinders embedded in a surface [25

25. F. J. García-Vidal and J. B. Pendry, “Col lective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996). [CrossRef] [PubMed]

]. When the cylinders intersect further this enhancement decreases and the field distribution finally merges into that of the single cylinder (Fig. 4).

Let us emphasize that the over hundredfold enhancement of the illumination amplitude observed for small separations or intersections, corresponds to an intensity enhancement larger than 104. In SERS, where the Raman signal is in a good approximation proportional to the fourth power of the amplitude enhancement [18

18. M. Moskovits,“Sur face-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985). [CrossRef]

], this would lead to a local Raman enhancement in excess of 108.

We now study the spectral response for particular separation distances d. In Fig. 5 we report the SCS for d=2, 5, 10 and 20 nm. The SCS clearly demonstrate that the main resonance is red–shifted with decreasing separation distance d, from 350 nm (d=50 nm) to 358 nm (d=20 nm), 368 nm (d=10 nm), 380 nm (d=5 nm) and 404 nm (d=2 nm).

Fig. 5. SCS for two 50 nm cylinders illuminated normally to their main axis. Five separation distances are investigated: d=2, 5, 10, 20 and 50 nm.
Fig. 6. Spectral variation of the field amplitude distribution for two interacting cylinders illuminated from the top, for different separation distances d: (a) d=2nm (361KB),(b) d=10 nm (359KB),and (c) d=20 nm (313KB). Front pictures: Corresponding main resonances (a) λ=404 (nm),(b) λ=368 (nm),and (c) λ=358 (nm).
Fig. 7. SCS for two intersecting 50 nm cylinders illuminated from the top. Three intersection distances are investigated: d=-2,-5 and -20nm.

Moreover, the complexity of the SCS increases for small separations, as higher order modes are excited (Fig. 5).

At the main resonance we then obtain a rather homogeneous field distribution in the gap, the amplitude reaching almost 100 times that of the illumination amplitude [λ=404 nm, Fig. 6(a)]. For larger separation distances d, the field enhancement at the main resonance is much smaller than for d=2nm, as already observed in Fig. 4. The amplitude in the gap reaches now about 18 for d=10 nm [Fig. 6(b)], and about 12 for d=20 nm [Fig. 6(c)]. Contrary to the d=2 nm case, no higher modes can now be resolved for these separation distances.

The SCS for intersecting cylinders (d=-2,-5, and -20 nm) is shown in Fig. 7. For d=-2 nm we observe a very complex spectrum: Several resonances are excited, spanning a large wavelength range between 340 nm and 583 nm. When the cylinders intersect further (d=-5nm and d=-20 nm), the spectra become less complex, and the resonances are blue–shifted. The reason for this is rather obvious: For larger intersection the spectrum will finally converge to that of a single cylinder.

Fig. 8. Polarization charge distribution for two intersecting 50 nm cylinders (d=-2 nm) for the resonances at (a) λ=338 nm,(b) λ=430 nm,(c) λ=540nm.
Fig. 9. Field amplitude distribution as a function of the illumination wavelength (indicated on the top of each frame) for two intersecting cylinders illuminated from the top. Different intersection distances are investigated: (a) d=-2 nm (634KB),(b) d=-5 nm (511KB),and (c) d=-20nm (386KB). Front pictures: Corresponding main resonances (a) λ=430 (nm),(b) λ=404 (nm),(c) λ=384 (nm).

For d=-5 nm the field distribution is similar, but with a smaller field amplitude. For d=-20 nm the field amplitude is much smaller, as the grooves angle opens and charges are less easily confined

3. Conclusions

Although not shown here, we observed similar enhancement factors for nanowires with dimensions in the 20–80 nm.

The near–field enhancement observed, with an electric field amplitude excessing hundred times the illumination amplitude, provides an important mechanism for SERS. The magnitude of this enhancement is sufficient for explaining recent SERS experiments where single molecule sensitivity was achieved [19

19. K. Kneipp, Y . Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld,“Si ngle molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1670 (1997). [CrossRef]

, 20

20. S. Nie and S. R. Emory,“Pr obing single molecules and single nanoparticles by surface-enhanced Ramsn scattering,” Science 275, 1102–1106 (1997). [CrossRef] [PubMed]

, 21

21. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson,“Sp ectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999). [CrossRef]

]. Remarkably, this enhancement is obtained in interacting particles with a very simple shape and does not require complex geometries such as fractal system [39

39. M. I. Stockmann, V. M. Shalaev, M . Moskovits, R. Botet, and T. F. George,“Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B 46, 2821–2830 (1992). [CrossRef]

].

The rapid variations of the resonances spectrum as a function of the particles configuration that we observed, provides an explanation for the spectral insensitivity of the Raman signal measured on large ensembles of molecules deposited on a colloidal substrate. As a matter of fact, such a substrate contains many different particles with different sizes and spacing, so that coupled plasmon resonances are likely to be excited irrespective of the illumination wavelength.

Acknowledgments

We are most indebted to S. Schultz and D.R. Smith who triggered our interest for plasmon resonant nanoparticles. This work was supported by the Swiss National Science Foundation.

References and links

1.

K. Bromann, C. Félix, H . Brune, W. Harbich, R. Monot, J. Buttet, and K. Kern,“Con trolled Deposition of Size-Selected Silver Nanoclusters,” Science 274, 956–958 (1996). [CrossRef] [PubMed]

2.

K. Abe, T. Hanada, Y . Yoshida, N . Tanigaki, H . Takiguchi, H . Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase,“Two-dimensional array of silver nanoparticles,” Thin Solid Films 327329, 524–527 (1997). [CrossRef]

3.

J. C. Hulteen, D . A. Treichel, M. T. Smith, M . L. Duval, T . R. Jensen, and R. P. van Duyne,“N anosphere Lithography: Size-Tunable Silver Nanoparticles and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999). [CrossRef]

4.

D. Y. Petrovykh, F. J. Himpsel, and T. Jung, “Width distribution of nanowires grown by step decoration,” Surf. Science 407, 189–199 (1998). [CrossRef]

5.

G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin,“Car bon nanotubule membranes for electrochemical energy storage and production,” Nature 393, 346–349 (1998). [CrossRef]

6.

A. P. Li, F. Müller, and U. Gösele,“Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina,” Electrochem. Solid-State Lett. 3, 131–134 (2000). [CrossRef]

7.

R. Elghanian, J. J. Storhoff, R . C. Mucic, R . L. Letsinger, and C. A. Mirkin, “Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles,” Science 277, 1078–1081 (1997). [CrossRef] [PubMed]

8.

L. A. Lyon, M . D. Musick, and M. J. Natan, “Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing,” Anal. Chem. 70, 5177–5183 (1998). [CrossRef] [PubMed]

9.

S. Schultz, D. R. Smith, J . J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000). [CrossRef] [PubMed]

10.

C. Viets and W. Hill,“Single-fibre surface-enhanced Raman sensors with angled tips,” J. Raman Spectrosc. 31, 625–631 (2000). [CrossRef]

11.

T. J. Silva and S. Schultz,“A scanning near-field optical microscope for the imaging of magnetic domains in reflection,” Rev. Sci. Inst. 67, 715–725 (1996). [CrossRef]

12.

R. M. Stöckle, Y . D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000). [CrossRef]

13.

J. P. Kottmann and O. J. F,“Retar dation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. in press (2001).

14.

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998). [CrossRef]

15.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999). [CrossRef]

16.

J. R. Krennet al.,“Squeezing the optical near–field by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999). [CrossRef]

17.

J. Tominaga, C. Mihalcea, D. Büchel, H . Fukuda, T. Nakano, N . Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78, 2417–2419 (2001). [CrossRef]

18.

M. Moskovits,“Sur face-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985). [CrossRef]

19.

K. Kneipp, Y . Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld,“Si ngle molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1670 (1997). [CrossRef]

20.

S. Nie and S. R. Emory,“Pr obing single molecules and single nanoparticles by surface-enhanced Ramsn scattering,” Science 275, 1102–1106 (1997). [CrossRef] [PubMed]

21.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson,“Sp ectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999). [CrossRef]

22.

J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett. in press, (2001).

23.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of Silver nanoparticles,” Optics Express 6, 213–219 (2000). [CrossRef] [PubMed]

24.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a non–regular cross–section,” Phys. Rev. B submitted (2001).

25.

F. J. García-Vidal and J. B. Pendry, “Col lective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996). [CrossRef] [PubMed]

26.

P. K. Aravind, A . Nitzan, and H. Metiu,“The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres,” Surf. Sci. 110, 189–204 (1981). [CrossRef]

27.

A. I. Vanin,“Sur face-amplified Raman scattering of light by molecules adsorbed on groups of spherical particles,” J. Appl. Spectrosc.62 (1995).

28.

N. Félidj, J . Aubard, and G. Lévi,“Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999). [CrossRef]

29.

H. Xu, J . Aizpurua, M. Käll, and P. Apell,“Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 1–7 (2000). [CrossRef]

30.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York,1983).

31.

U. Kreibig and M. Vollmer, Optical Poperties of Metal Clusters, Springer Series in Material ScienceVol. 25 (Springer Verlag,Ber lin,1995).

32.

U. Kreibig and C. v. Fragstein,“The Limitation of Electron Mean Free Path in Small Silver Particles,” Z. Physik 224, 307–323 (1969). [CrossRef]

33.

L. Genzel, T. P. Martin, and U. Kreibig,“Dielectric Function and Plasma Resonances of Small Metal Particles,” Z. Physik B 21, 339–346 (1975). [CrossRef]

34.

K.-P. Charlé, L. König, S. Nepijko, I. Rabin, and W. Schulze, “The Surface Plasmon Resonance in Free and Embedded Ag-Clusters in the Size Range 1,5 nm<D<30 nm,” Cryst. Res. Technol. 33, 1085–1096 (1998). [CrossRef]

35.

J.-Y. Bigot, V . Halté, J. C. Merle, and A. Daunois,“Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000). [CrossRef]

36.

P. B. Johnson and R. W. Christy,“Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

37.

J. P. Kottmann and O. J. F. Martin,“Accurate solution of the volume integral equation for high permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000). [CrossRef]

38.

J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Phys. 2, 27.1–27.9 (2000). [CrossRef]

39.

M. I. Stockmann, V. M. Shalaev, M . Moskovits, R. Botet, and T. F. George,“Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B 46, 2821–2830 (1992). [CrossRef]

OCIS Codes
(160.3900) Materials : Metals
(240.5420) Optics at surfaces : Polaritons
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(290.0290) Scattering : Scattering
(290.5860) Scattering : Scattering, Raman
(350.3950) Other areas of optics : Micro-optics
(350.4990) Other areas of optics : Particles

ToC Category:
Research Papers

History
Original Manuscript: May 9, 2001
Published: June 2, 2001

Citation
Joerg Kottmann and Olivier Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-8-12-655


Sort:  Journal  |  Reset  

References

  1. K. Bromann, C. Félix, H. Brune, W. Harbich, R. Monot, J. Buttet, and K. Kern, "Controlled Deposition of Size-Selected Silver Nanoclusters," Science 274, 956-958 (1996). [CrossRef] [PubMed]
  2. K. Abe, T. Hanada, Y. Yoshida, N. Tanigaki, H. Takiguchi, H. Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase, "Two-dimensional array of silver nanoparticles," Thin Solid Films 327-329, 524-527 (1997). [CrossRef]
  3. J.C. Hulteen, D.A. Treichel, M.T. Smith, M.L. Duval, T.R. Jensen, and R.P. van Duyne, "Nanosphere Lithography: Size-Tunable Silver Nanoparticles and Surface Cluster Arrays," J.Phys.Chem.B 103, 3854-3863 (1999). [CrossRef]
  4. D.Y. Petrovykh, F.J. Himpsel, and T. Jung, "Width distribution of nanowires grown by step decoration," Surf.Science 407, 189-199 (1998). [CrossRef]
  5. G.L. Che, B.B. Lakshmi, E.R. Fisher, and C.R. Martin, "Carbon nanotubule membranes for electrochemical energy storage and production," Nature 393, 346-349 (1998). [CrossRef]
  6. A.P. Li, F. Muller, and U. Gosele, "Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina," Electrochem.Solid-State Lett. 3, 131-134 (2000). [CrossRef]
  7. R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, and C.A. Mirkin, "Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles," Science 277, 1078-1081 (1997). [CrossRef] [PubMed]
  8. L.A. Lyon, M.D. Musick, and M.J. Natan, "Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing," Anal.Chem. 70, 5177-5183 (1998). [CrossRef] [PubMed]
  9. S. Schultz, D.R. Smith, J.J. Mock, and D.A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000). [CrossRef] [PubMed]
  10. C. Viets and W. Hill, "Single-fibre surface-enhanced Raman sensors with angled tips," J. Raman Spectrosc. 31, 625-631 (2000). [CrossRef]
  11. T.J. Silva and S. Schultz, "A scanning near-field optical microscope for the imaging of magnetic domains in reflection," Rev. Sci. Inst. 67, 715-725 (1996). [CrossRef]
  12. R.M. Stöckle, Y.D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Chem. Phys. Lett. 318, 131-136 (2000). [CrossRef]
  13. J.P. Kottmann and O.J.F, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. in press (2001).
  14. M. Quinten, A. Leitner, J.R. Krenn, and F.R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  15. J.-C. Weeber, A. Dereux, C. Girard, J.R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999). [CrossRef]
  16. J.R. Krenn et al., "Squeezing the optical near-field by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999). [CrossRef]
  17. J. Tominaga, C. Mihalcea, D. Büchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, "Local plasmon photonic transistor," Appl.Phys.Lett. 78, 2417-2419 (2001). [CrossRef]
  18. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985). [CrossRef]
  19. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, and M.S. Feld, "Single molecule detection using surface-enhanced Raman scattering," Phys. Rev. Lett. 78, 1667-1670 (1997). [CrossRef]
  20. S. Nie and S.R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Ramsn scattering," Science 275, 1102-1106 (1997). [CrossRef] [PubMed]
  21. H. Xu, E.J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357-4360 (1999). [CrossRef]
  22. J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Dramatic localized electromagnetic enhancement in plasmon resonant nanowires," Chem. Phys. Lett. in press, (2001).
  23. J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Spectral response of Silver nanoparticles," Optics Express 6, 213-219 (2000), http://www.opticsexpress.org/oearchive/source/21116.htm [CrossRef] [PubMed]
  24. J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a non-regular cross-section," Phys. Rev. B submitted (2001).
  25. F.J. García-Vidal and J.B. Pendry, "Collective theory for surface enhanced Raman scattering," Phys. Rev. Lett. 77, 1163-1166 (1996). [CrossRef] [PubMed]
  26. P.K. Aravind, A. Nitzan, and H. Metiu, "The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres," Surf. Sci. 110, 189-204 (1981). [CrossRef]
  27. A.I. Vanin, "Surface-amplified Raman scattering of light by molecules adsorbed on groups of spherical particles," J. Appl. Spectrosc. 62 (1995).
  28. N. Félidj, J. Aubard, and G. Lévi, "Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids," J. Chem. Phys. 111, 1195-1208 (1999). [CrossRef]
  29. H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 1-7 (2000). [CrossRef]
  30. C.F. Bohren and D.R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983).
  31. U. Kreibig and M. Vollmer, Optical Poperties of Metal Clusters, Springer Series in Material Science Vol. 25 (Springer Verlag, Berlin, 1995).
  32. U. Kreibig and C. v. Fragstein, "The Limitation of Electron Mean Free Path in Small Silver Particles," Z. Physik 224, 307-323 (1969). [CrossRef]
  33. L. Genzel, T.P. Martin, and U. Kreibig, "Dielectric Function and Plasma Resonances of Small Metal Particles," Z. Physik B 21, 339-346 (1975). [CrossRef]
  34. K.-P. Charlé, L. Köig, S. Nepijko, I. Rabin, and W. Schulze, "The Surface Plasmon Resonance in Free and Embedded Ag-Clusters in the Size Range 1,5 nm < D < 30 nm," Cryst. Res. Technol. 33, 1085-1096 (1998). [CrossRef]
  35. J.-Y. Bigot, V. Halté, J.C. Merle, and A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251, 181-203 (2000). [CrossRef]
  36. P.B. Johnson and R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  37. J.P. Kottmann and O.J.F. Martin, "Accurate solution of the volume integral equation for high permittivity scatterers," IEEE Trans. Antennas Propag. 48, 1719-1726 (2000). [CrossRef]
  38. J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Field polarization and polarization charge distributions in plasmon resonant particles," New J. Phys. 2, 27.1-27.9 (2000). [CrossRef]
  39. M.I. Stockmann, V.M. Shalaev, M. Moskovits, R. Botet, and T.F. George, "Enhanced Raman scattering by fractal clusters: Scale-invariant theory," Phys. Rev. B 46, 2821-2830 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (271 KB)     
» Media 2: MOV (313 KB)     
» Media 3: MOV (372 KB)     
» Media 4: MOV (276 KB)     
» Media 5: MOV (353 KB)     
» Media 6: MOV (351 KB)     
» Media 7: MOV (306 KB)     
» Media 8: MOV (619 KB)     
» Media 9: MOV (499 KB)     
» Media 10: MOV (377 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited