OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 9, Iss. 12 — Dec. 3, 2001
  • pp: 603–609
« Show journal navigation

Polarization state modifications in the propagation of high azimuthal order annular beams

Antonio Lapucci and Marco Ciofini  »View Author Affiliations


Optics Express, Vol. 9, Issue 12, pp. 603-609 (2001)
http://dx.doi.org/10.1364/OE.9.000603


View Full Text Article

Acrobat PDF (196 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a vector Fresnel diffraction propagator we investigate the far-field distributions obtained from guided annular modes with different polarization states. Furthermore we demonstrate that a pure azimuthal polarization transforms into a mainly radial one in the propagation of annular beams with azimuthal mode number higher than 0. This property could enhance the performance of a laser metal-cutting system based on these kind of beams.

© Optical Society of America

1. Introduction

Recently considerable effort has been invested in understanding the propagation of electromagnetic fields characterized by a definite transverse localization but strongly different from the classical families of linearly polarized Hermite-Gauss or Laguerre-Gauss modes. In order to understand the properties of these beams - such as divergence, focusing ability or polarization state rotation - a thorough analysis is necessary, based on basic wave equations or complete diffraction integrals. Most formulae derived for the propagation of Gaussian beams are not applicable. Neither are the most common beam quality indicators for Gaussian beams applicable. Such a situation is encountered, for instance, when examining beams generated by the annular wave-guide diffusion cooled CO2 lasers [1

1. A. Lapucci, F. Rossetti, and P. Burlamacchi, “Beam Properties of an R.F.-discharge annular CO2 laser,” Opt. Commun. 111, 290–296 (1994). [CrossRef]

2

2. A. Lapucci, M. Ciofini, S. Mascalchi, E. Di Fabrizio, and M. Gentili, “Beam quality enhancement for an rf-excited annular CO2 laser,” Appl. Phys. Lett. 73, 2549–2551, (1998). [CrossRef]

] leading to the study present here.

A similar geometry, with a ring shaped beam cross-section, is actually encountered in several other systems as a result of specific laser designs. This is the case of axially pumped Nd:YAG [3

3. U. Wittrock, H. Weber, and B. Heppich, “Inside pumped Nd:YAG tube laser,” Opt. Lett. 16, 1092–1094 (1991). [CrossRef] [PubMed]

] or dye lasers [4

4. P. Burlamacchi, R. Pratesi, and L. Ronchi, “Self-guiding flashlamp-pumped dye lasers,” Appl. Opt. 14, 79–93 (1975). [PubMed]

] and also of Concentric-Circle Grating Surface Emitting (CCGSE) semiconductor lasers [5

5. T. Erdogan and D.G. Hall, “Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields,” IEEE J. Quantum Electron. QE-28, 612–623, (1992). [CrossRef]

]. This last case gave origin to a series of fruitful developments and observations. Jordan and Hall [6

6. R.H. Jordan and D.G. Hall “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett. 19, 427–429 (1994). [CrossRef] [PubMed]

] derived a free-space azimuthal paraxial wave equation supporting azimuthal Bessel-Gauss (ABG) beams, i.e. beams with a Bessel-Gauss amplitude distribution and electric field everywhere directed in the azimuthal direction of the transverse plane. Later, Hall [7

7. D.G. Hall, “Vector-beam solutions of Maxwell’s wave equation,” Opt. Lett. 21, 9–11, (1996). [CrossRef] [PubMed]

] generalized the solution of the Helmoltz wave-equation to the general vector case and Greene and Hall [8

8. P. L. Greene and D.G. Hall, “Properties and diffraction of vector Bessel-Gauss beams,” J.Opt.Soc.Am. A 15, 3020–3027, (1998). [CrossRef]

] studied the properties of vector Bessel- Gauss beams as solutions of the aforementioned vector wave-equation. This family of modes includes the azimuthal Bessel-Gauss beam as the lowest order mode. The focusing properties of this set of beams has also been studied by Greene and Hall in [9

9. P. L. Greene and D.G. Hall, “Focal shift in vector beams,” Opt. Express 4, 411–419 (1999), http://www.opticsexpress.org/oearchive/source/9094.htm. [CrossRef] [PubMed]

].

The field distributions of our study are generated as modes of an annular waveguide [10

10. M. Ciofini and A. Lapucci, “Guided Talbot resonators for annular laser sources,” J. Opt. A: Pure Appl. Opt. 2, 223–227, (2000). [CrossRef]

]; thus they do not represent pure eigenfunctions of the free-space propagation problem. Nevertheless our analysis confirms some results already presented in the series of papers previously cited [6

6. R.H. Jordan and D.G. Hall “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett. 19, 427–429 (1994). [CrossRef] [PubMed]

9

9. P. L. Greene and D.G. Hall, “Focal shift in vector beams,” Opt. Express 4, 411–419 (1999), http://www.opticsexpress.org/oearchive/source/9094.htm. [CrossRef] [PubMed]

]. Moreover, as is detailed in what follows, we further obtain evidence of phenomena that appear of particular significance for the case of high power laser beams, designed for material processing applications.

First of all, it is noteworthy that a fundamental annular mode with azimuthal polarization maintains its shape, with an on-axis hole, during propagation and thus also during focusing. This behavior differs from that of a linearly polarized constant phase “donut” mode, that shows an on-axis peak in its far field. Secondly, as a consequence of its rotation invariance, the fundamental azimuthal mode also maintains its polarization state during propagation, as does the linearly polarized donut mode. This result is extended in [11

11. K.S. Youngworth and T.G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 4, 77–87 (2000), http://www.opticsexpress.org/oearchive/source/22809.htm. [CrossRef]

] to the focusing of fundamental radially polarized circularly symmetric annular modes, with the sole exception of the generation of on-axis longitudinal components when focusing with high numerical apertures.

Higher order modes generated by the annular waveguide have markedly different propagation characteristics in free-space. In this particular case, with the metallic coaxial guide generating high order azimuthal modes having azimuthal polarization, neither the azimuthal field distribution nor the polarization state are preserved during propagation. Instead, a characteristic contrast reversal is observed, as noted in ref. [9

9. P. L. Greene and D.G. Hall, “Focal shift in vector beams,” Opt. Express 4, 411–419 (1999), http://www.opticsexpress.org/oearchive/source/9094.htm. [CrossRef] [PubMed]

], along with a polarization transformation from azimuthal to mainly radial.

This last result appears particularly interesting. Indeed it has been shown [12

12. V.G. Niziev and A.V. Nestorov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D: Appl. Phys. 32, 1455–1461, (1999). [CrossRef]

] that, given the higher absorption of the S-polarized wave in metallic reflection, a beam with radial polarization can double the cutting performance of the analogous beam with circular polarization. This latter case is, at present, the typical polarization state produced in metal cutting systems from standard linearly polarized laser sources.

2. Propagation modeling

Our analysis is based on numerical algorithms performing Fresnel diffraction integral propagations [10

10. M. Ciofini and A. Lapucci, “Guided Talbot resonators for annular laser sources,” J. Opt. A: Pure Appl. Opt. 2, 223–227, (2000). [CrossRef]

,13

13. A. Lapucci and M. Ciofini, “Extraction of high quality beams from narrow annular sources,” Appl. Opt. 38, 4552–4557, (1999). [CrossRef]

]. For initial conditions, we use the annular field distributions defined in [10

10. M. Ciofini and A. Lapucci, “Guided Talbot resonators for annular laser sources,” J. Opt. A: Pure Appl. Opt. 2, 223–227, (2000). [CrossRef]

], which correspond to the eigen-functions of the coaxial-tube waveguide.

To understand the role of polarization, we now compare the behavior of fields that have the same transverse amplitude distribution but different polarization state. Uniform linearly polarized fields are treated with a scalar propagator, while azimuthally polarized beams are propagated with a vector-propagator, operating on a two orthogonal component complex electric field. Metallic reflection boundary conditions together with the typical geometrical dimensions of our guides (characterized by a large diameter-to-thickness ratio) are responsible for the generation of fields with an azimuthal polarization state. We will thus concentrate our analysis on the propagation of two cases: beams with an initial uniform linear polarization state (LPB); and beams with an initial linear polarization everywhere directed parallel to the azimuthal versor in the transverse plane (APB). This purely azimuthal polarization state, even on higher order modes, is a direct consequence of a wave-guided beam generation. It does not find correspondence in the vector field solutions of the free space propagation problem, discussed in ref. [8

8. P. L. Greene and D.G. Hall, “Properties and diffraction of vector Bessel-Gauss beams,” J.Opt.Soc.Am. A 15, 3020–3027, (1998). [CrossRef]

].

Fig. 1. Near- and Far-Field plots of LPB (first column) and APB (second column) corresponding to a mode with azimuthal number equal to four. Beam dimensions in the nearfield are 28 mm internal diameter, 32 mm outer diameter. The Far-field figure corresponds to a full angle of 13.25 mrad. (Near-Fields on the first row, Far-Fields on the second.)

3. Numerical results

First of all we show in Fig.1 the effect of polarization in the propagation of a pure mode of our optical waveguide [10

10. M. Ciofini and A. Lapucci, “Guided Talbot resonators for annular laser sources,” J. Opt. A: Pure Appl. Opt. 2, 223–227, (2000). [CrossRef]

]. For sake of clarity, we considered modes with a relatively low transverse number, so that a reasonable resolution is maintained along the whole propagation distance. In Fig.1 the near- and far-field intensity plots of the LPB and APB are reported, with azimuthal mode-number equal to 4 and with a thickness-to-diameter ratio corresponding to that of our experimental beams [1

1. A. Lapucci, F. Rossetti, and P. Burlamacchi, “Beam Properties of an R.F.-discharge annular CO2 laser,” Opt. Commun. 111, 290–296 (1994). [CrossRef]

2

2. A. Lapucci, M. Ciofini, S. Mascalchi, E. Di Fabrizio, and M. Gentili, “Beam quality enhancement for an rf-excited annular CO2 laser,” Appl. Phys. Lett. 73, 2549–2551, (1998). [CrossRef]

].

Fig. 2. Propagation movies of compressed LPB (left-hand column — Movie-1 (830 kb)) and APB (right-hand column— Movie-2 (860 kb)) of order 4. Beams are propagated for 6 m after collimation with a concave 12 m R.O.C. mirror. Beam dimensions in the near-field are 4 mm internal diameter, 32 mm outer diameter. Snapshots show the near-field (first row) and far-field (second row) intensity patterns of the two different beams.

The movies show that the linearly polarized mode diffracts in the radial direction only, maintaining the same nodal lines on all the transverse planes. On the contrary the APB diffracts in the azimuthal direction too, filling in the nodal lines and producing a peaked distribution which exhibits contrast reversal in the far field. During this propagation next-neighboring lobes diverge radially and interfere to produce field distributions with elliptical polarization in the intermediate planes. As propagation proceeds towards the far-field, these distributions gradually re-organize into main lobes with a linear polarization oriented parallel to the radial direction. Apparently these lobes are not divided by nodal lines but rather by point singularities around which polarization rotates.

Fig.3. Vector Plots of compressed beams having LP and AP on the initial planes. Beam dimensions in the near-field are 4 mm internal diameter, 32 mm outer diameter. The far-field figures correspond to a full angle of 3.2 mrad.

This last property can be observed in Fig.3 where the near- and far-field vector field plots are shown for both the LPB (left column) and the APB (right column). The different effect of propagation for this two fields is clearly seen. In the case of uniform linear polarization the lobes with alternating phase interfere in such a way as to maintain the same nodal-lines geometry at any propagation distance (see the first movie). On the contrary the differently oriented fields of the APB lobes produce non-zero contributions along the originally nodal transverse directions. Precisely these directions have the maximum intensity in the Far-field and a linear polarization oriented in the radial direction. The intermediate distributions (visible in the second movie), in which the regularly peaked distribution in the azimuthal direction is smeared out, exhibit a general elliptical polarization. Incidentally we note here a striking result, which is not completely clear in the figures due to space limitations. The secondary diffraction rings seen in the bottom row of Fig.1 not only maintain their azimuthal orientation also in the case of an APB, but also they maintain their polarization state that is consequently different from that of the principal far-field ring.

4. The phase-correction process

In our numerical results, the corrected beams consistently produced far-field distributions with a main lobe resembling that of the fundamental mode. This lobe naturally exhibited the polarization of the fundamental mode. This means that when the lobes of a high order azimuthal mode are re-phased, the Far-field will have a substantially azimuthal polarization, whereas the polarization is mainly radial in the case of de-phased (uncorrected) lobes.

The regular patterning visible in the early part of the movies is a consequence of the sharp-edged phase correction producing cusps in the pure azimuthal mode distributions.

Fig. 4. Propagation movies of compressed and phase-corrected LPB (left-hand column — Movie-3 (817 kb)) and APB (right-hand column— Movie-4 (850 kb)) of order 4. Beam dimensions and propagation distance are as in Fig.2. Only far-fields are shown in the snapshots (near-fields being equal to those in the first row of fig.2).

5. Conclusions

Since one can usually change the polarization state of a fundamental Gaussian-like beam without affecting the far-field intensity distribution, these properties are too often disregarded in many applications.

Acknowledgments

We are indebted to Howard J. Baker and James Strohschein for their kind revision of our manuscript.

References and links

1.

A. Lapucci, F. Rossetti, and P. Burlamacchi, “Beam Properties of an R.F.-discharge annular CO2 laser,” Opt. Commun. 111, 290–296 (1994). [CrossRef]

2.

A. Lapucci, M. Ciofini, S. Mascalchi, E. Di Fabrizio, and M. Gentili, “Beam quality enhancement for an rf-excited annular CO2 laser,” Appl. Phys. Lett. 73, 2549–2551, (1998). [CrossRef]

3.

U. Wittrock, H. Weber, and B. Heppich, “Inside pumped Nd:YAG tube laser,” Opt. Lett. 16, 1092–1094 (1991). [CrossRef] [PubMed]

4.

P. Burlamacchi, R. Pratesi, and L. Ronchi, “Self-guiding flashlamp-pumped dye lasers,” Appl. Opt. 14, 79–93 (1975). [PubMed]

5.

T. Erdogan and D.G. Hall, “Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields,” IEEE J. Quantum Electron. QE-28, 612–623, (1992). [CrossRef]

6.

R.H. Jordan and D.G. Hall “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett. 19, 427–429 (1994). [CrossRef] [PubMed]

7.

D.G. Hall, “Vector-beam solutions of Maxwell’s wave equation,” Opt. Lett. 21, 9–11, (1996). [CrossRef] [PubMed]

8.

P. L. Greene and D.G. Hall, “Properties and diffraction of vector Bessel-Gauss beams,” J.Opt.Soc.Am. A 15, 3020–3027, (1998). [CrossRef]

9.

P. L. Greene and D.G. Hall, “Focal shift in vector beams,” Opt. Express 4, 411–419 (1999), http://www.opticsexpress.org/oearchive/source/9094.htm. [CrossRef] [PubMed]

10.

M. Ciofini and A. Lapucci, “Guided Talbot resonators for annular laser sources,” J. Opt. A: Pure Appl. Opt. 2, 223–227, (2000). [CrossRef]

11.

K.S. Youngworth and T.G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 4, 77–87 (2000), http://www.opticsexpress.org/oearchive/source/22809.htm. [CrossRef]

12.

V.G. Niziev and A.V. Nestorov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D: Appl. Phys. 32, 1455–1461, (1999). [CrossRef]

13.

A. Lapucci and M. Ciofini, “Extraction of high quality beams from narrow annular sources,” Appl. Opt. 38, 4552–4557, (1999). [CrossRef]

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(260.5430) Physical optics : Polarization

ToC Category:
Research Papers

History
Original Manuscript: November 16, 2001
Published: December 3, 2001

Citation
Antonio Lapucci and Marco Ciofini, "Polarization state modifications in the propagation of high azimuthal order annular beams," Opt. Express 9, 603-609 (2001)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-12-603


Sort:  Journal  |  Reset  

References

  1. A. Lapucci, F. Rossetti, P. Burlamacchi, "Beam Properties of an R.F.-discharge annular CO2 laser," Opt. Commun. 111, 290-296 (1994). [CrossRef]
  2. A. Lapucci, M.C iofini, S. Mascalchi, E. Di Fabrizio, M. Gentili, "Beam quality enhancement for an rf-excited annular CO2 laser," Appl. Phys. Lett. 73, 2549-2551, (1998). [CrossRef]
  3. U. Wittrock, H. Weber, B.Heppich, "Inside pumped Nd:YAG tube laser," Opt. Lett. 16, 1092-1094 (1991). [CrossRef] [PubMed]
  4. P. Burlamacchi, R. Pratesi, L. Ronchi, "Self-guiding flashlamp-pumped dye lasers," Appl. Opt. 14, 79-93 (1975). [PubMed]
  5. T. Erdogan, D. G. Hall, "Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields," IEEE J. Quantum Electron. QE-28, 612-623, (1992). [CrossRef]
  6. R. H. Jordan, D. G. Hall " Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution," Opt. Lett. 19, 427-429 (1994). [CrossRef] [PubMed]
  7. D. G. Hall, "Vector-beam solutions of Maxwell's wave equation," Opt. Lett. 21, 9-11, (1996). [CrossRef] [PubMed]
  8. P. L. Greene, D. G. Hall, "Properties and diffraction of vector Bessel-Gauss beams," J. Opt. Soc. m. A 15, 3020-3027, (1998). [CrossRef]
  9. P. L. Greene, D. G. Hall, "Focal shift in vector beams," Opt. Express 4, 411-419 (1999), http://www.opticsexpress.org/oearchive/source/9094.htm. [CrossRef] [PubMed]
  10. M. Ciofini, A. Lapucci, "Guided Talbot resonators for annular laser sources," J. Opt. A: Pure Appl. Opt. 2, 223- 227, (2000). [CrossRef]
  11. K. S. Youngworth, T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 4, 77-87 (2000), http://www.opticsexpress.org/oearchive/source/22809.htm. [CrossRef]
  12. V. G. Niziev, A. V. Nestorov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D: Appl. Phys. 32, 1455-1461, (1999). [CrossRef]
  13. A. Lapucci, M. Ciofini, "Extraction of high quality beams from narrow annular sources," Appl. Opt. 38, 4552-4557, (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig.3.
 
Fig. 4.
 

Supplementary Material


» Media 1: MOV (828 KB)     
» Media 2: MOV (859 KB)     
» Media 3: MOV (817 KB)     
» Media 4: MOV (849 KB)     

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited