Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Propagation velocity of laser-induced plasma inside and outside a transparent droplet

Not Accessible

Your library or personal account may give you access

Abstract

The supersonic propagation velocity of the emission front of plasma produced by laser-induced breakdown of a micrometer-sized transparent droplet flowing in a gas was measured with a streak camera at three intensity levels. At low input intensity, the plasma velocities in the gas away from and toward the shadow face were determined. At medium input intensity, the plasma velocities in the gas outside the shadow face and within the liquid (traveling toward the illuminated face) were measured. At high input intensity, the plasma velocities in the gas outside the shadow face, within the liquid, and in the gas outside the illuminated face were deduced.

© 1987 Optical Society of America

Full Article  |  PDF Article
More Like This
Internal and external laser-induced avalanche breakdown of single droplets in an argon atmosphere

W.-F. Hsieh, J. H. Eickmans, and R. K. Chang
J. Opt. Soc. Am. B 4(11) 1816-1820 (1987)

Laser-induced breakdown in large transparent water droplets

Richard K. Chang, Johannes H. Eickmans, Wen-Feng Hsieh, Carol F. Wood, Jian-Zhi Zhang, and Jia-biao Zheng
Appl. Opt. 27(12) 2377-2385 (1988)

Propagation of laser breakdown and detonation waves in transparent droplets

Joseph C. Carls and James R. Brock
Opt. Lett. 13(4) 273-275 (1988)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved