OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 21, Iss. 13 — Jul. 1, 1996
  • pp: 937–939

Modulational stability of plane waves in nonreturn-to-zero communications systems with dispersion management

Jared C. Bronski and J. Nathan Kutz  »View Author Affiliations

Optics Letters, Vol. 21, Issue 13, pp. 937-939 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (314 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dispersion-managed optical transmission lines, with dispersion periodically switched between the normal and anomalous regimes, offer significantly better performance than transmission lines with constant dispersion by reducing the dispersion penalty and spectral broadening owing to self-phase modulation. We analyze the evolution of plane waves in a dispersion-managed transmission line, using Floquet theory, and show them to be modulationally stable, provided that the average dispersion is zero or negative (normal dispersion) and that the switching is fast enough, and to be unstable when anomalous dispersion dominates. These results indicate that the transition regions between 1’s and 0’s are primarily responsible for pulse deformations.

© 1996 Optical Society of America

Original Manuscript: February 22, 1996
Published: July 1, 1996

Jared C. Bronski and J. Nathan Kutz, "Modulational stability of plane waves in nonreturn-to-zero communications systems with dispersion management," Opt. Lett. 21, 937-939 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. S. Bergano, C. R. Davidson, in Optical Fiber Communication, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper PD19.
  2. A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, R. M. Derosier, IEEE Electron. Lett. 31, 277 (1995). [CrossRef]
  3. A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, R. M. Derosier, C. R. Giles, B. M. Nyman, G. A. Ferguson, J. W. Sulhoff, J. L. Zyskind, IEEE Photon. Technol. Lett. 7, 98 (1995). [CrossRef]
  4. C. Kurtzke, IEEE Photon. Technol. Lett. 5, 1250 (1993). [CrossRef]
  5. R. W. Tkach, A. R. Chraplyvy, F. Forguieri, A. H. Gnauck, R. M. Derosier, J. Lightwave Technol. 13, 841 (1995). [CrossRef]
  6. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  7. A. H. Nayfeh, D. T. Mook, Nonlinear Oscillations (Wiley, New York, 1979).
  8. C. M. Bender, S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978).
  9. Y. Kodama, S. Wabnitz, Opt. Lett. 20, 2291 (1995). [CrossRef] [PubMed]
  10. J. C. Bronski, J. N. Kutz, Physica D (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited