OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 21, Iss. 7 — Apr. 1, 1996
  • pp: 528–530

Dispersive white-light interferometry for absolute distance measurement with dielectric multilayer systems on the target

U. Schnell, R. Dändliker, and S. Gray  »View Author Affiliations

Optics Letters, Vol. 21, Issue 7, pp. 528-530 (1996)

View Full Text Article

Enhanced HTML    Acrobat PDF (395 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have extended the use of a dispersive white-light interferometer for absolute distance measurement to include effects of dielectric multilayer systems on the target. The phase of the reflected wave changes as a function of wavelength and layer thickness and causes errors in the interferometric distance measurement. With dispersive white-light interferometry these effects can be measured in situ, and the correct mechanical distance can be determined. The effects of thin films deposited upon the target have been investigated for one and two layers (photoresist and SiO2 upon Si). Experimental results show that the thicknesses of these layers can also be determined with an accuracy of the order of 10 nm.

© 1996 Optical Society of America

Original Manuscript: September 20, 1995
Published: April 1, 1996

U. Schnell, S. Gray, and R. Dändliker, "Dispersive white-light interferometry for absolute distance measurement with dielectric multilayer systems on the target," Opt. Lett. 21, 528-530 (1996)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Polhemus, Appl. Opt. 12, 2071 (1973). [CrossRef] [PubMed]
  2. M. Davidson, K. Kaufman, K. Mazor, F. Cohen, Proc. SPIE 775, 233–247 (1987).
  3. J. Schwider, L. Zhou, Opt. Lett. 19, 995 (1994). [CrossRef] [PubMed]
  4. U. Schnell, E. Zimmermann, R. Dändliker, Pure Appl. Opt. 4, 643 (1995). [CrossRef]
  5. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987), pp. 153–416.
  6. J. A. Dobrowolski, F. C. Ho, A. Waldorf, Appl. Opt. 22, 3191 (1983). [CrossRef] [PubMed]
  7. K.-P. Koch, M. Maechler, F. Glueck, Rev. Sci. Instrum. 56, 2243 (1985). [CrossRef]
  8. J. Mannhardt, T. Fuchs, M. Mächler, Feinwerk-technik & Messtechnik 97, 269 (1989).
  9. T. M. Merklein, Appl. Opt. 29, 505 (1990). [CrossRef] [PubMed]
  10. J. Schwider, Appl. Opt. 31, 6107 (1992). [CrossRef] [PubMed]
  11. Levenberg–Marquardt algorithm implemented in the MATLAB function leastsq, in Optimization Toolbox for Use with MATLAB (MathWorks, Natick, Mass., 1994).
  12. C. L. Mitsas, D. I. Siapkas, Appl. Opt. 34, 1678 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited