OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 22, Iss. 18 — Sep. 15, 1997
  • pp: 1385–1387

Modification of solitary waves by third-harmonic generation

Rowland A. Sammut, Alexander V. Buryak, and Yuri S. Kivshar  »View Author Affiliations


Optics Letters, Vol. 22, Issue 18, pp. 1385-1387 (1997)
http://dx.doi.org/10.1364/OL.22.001385


View Full Text Article

Acrobat PDF (259 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of phase-matched third-harmonic generation on the structure and stability of spatial solitary waves is investigated. A power threshold for the existence of two-frequency spatial solitons is found, and the multistability of solitary waves in a Kerr medium owing to a higher-order nonlinear phase shift caused by cascaded third-order processes is revealed.

© 1997 Optical Society of America

Citation
Rowland A. Sammut, Alexander V. Buryak, and Yuri S. Kivshar, "Modification of solitary waves by third-harmonic generation," Opt. Lett. 22, 1385-1387 (1997)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-22-18-1385


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. I. V. Tomov and M. C. Richardson, IEEE J. Quantum Electron. 12, 521 (1976).
  2. G. I. Stegeman, D. J. Hagan, and L. Torner, J. Opt. Quantum Electron. 28, 1691 (1996).
  3. A. V. Buryak and Yu. S. Kivshar, Phys. Lett. A 197, 407 (1995).
  4. D. E. Pelinovsky, A. V. Buryak, and Yu. S. Kivshar, Phys. Rev. Lett. 75, 591 (1995).
  5. A. V. Buryak, Yu. S. Kivshar, and S. Trillo, Phys. Rev. Lett. 77, 5210 (1996).
  6. S. Saltiel, S. Tanev, and A. D. Boardman, Opt. Lett. 22, 148 (1997).
  7. N. A. Ansari, R. A. Sammut, and H. T. Tran, J. Opt. Soc. Am. B 13, 1419 (1996).
  8. After rescaling, this exact solution becomes the same as that found by Y. Chen, Phy. Rev. A 50, 5145 (1994).
  9. To analyze soliton stability, we substitute u=u0(x)+x and w=w0(x)+h into Eqs. 3 and 4 and, after linearization in x and h, investigate numerically the corresponding linear eigenvalue problem.
  10. A. E. Kaplan, Phys. Rev. Lett. 55, 1291 (1985); IEEE J. Quantum Electron. QE-21, 1538 (1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited