OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 24, Iss. 24 — Dec. 15, 1999
  • pp: 1853–1855

Photorefractive polymeric optical spatial solitons

Ming-Feng Shih and Fang-Wen Sheu  »View Author Affiliations

Optics Letters, Vol. 24, Issue 24, pp. 1853-1855 (1999)

View Full Text Article

Acrobat PDF (116 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We predict the formation of optical spatial solitons in photorefractive polymers. The orientational enhancement from the doped chromophores and the dependency of the quantum efficiency of generating mobile holes on the electric field make the polymeric solitons behave differently from other photorefractive solitons.

© 1999 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(250.5460) Optoelectronics : Polymer waveguides

Ming-Feng Shih and Fang-Wen Sheu, "Photorefractive polymeric optical spatial solitons," Opt. Lett. 24, 1853-1855 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, Phys. Rev. Lett. 68, 923 (1992).
  2. M. Segev and G. Stegeman, Phys. Today 51(8), 42 (1998), and references therein.
  3. M. Segev, G. C. Valley, B. Crosignani, P. Diporto, and A. Yariv, Phys. Rev. Lett. 73, 3211 (1994); M. Segev, M. Shih, and G. C. Valley, J. Opt. Soc. Am. B 13, 706 (1996).
  4. D. N. Christodoulides and M. Carvalho, J. Opt. Soc. Am. B 12, 1628 (1995).
  5. M.-F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. DiPorto, Electron. Lett. 31, 826 (1995).
  6. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, Phy. Rev. Lett. 66, 1846 (1991).
  7. K. Meerholz, B. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, Nature 371, 497 (1994); M. Liphardt, A. Goonesekera, B. Jones, S. Ducharme, J. Takacs, and L. Zhang, Science 263, 367 (1994) ; A. Grunnet-Jepsen, C. Thompson, and W. Moerner, Science 277, 549 (1997).
  8. C. Poga, P. Lundquist, V. Lee, R. Shelby, R. Twieg, and D. Burland, Appl. Phys. Lett. 69, 1047 (1996).
  9. W. E. Moerner and S. M. Silence, Chem. Rev. 94, 127 (1994).
  10. W. Moerner, S. Silence, F. Hache, and G. Bjorklund, J. Opt. Soc. Am. B 11, 320 (1994).
  11. C. Moylan, R. Wortmann, R. Twieg, and I. McComb, J. Opt. Soc. Am. B 15, 929 (1998).
  12. S. Schloter, U. Hofmann, P. Strohriegl, H. Schmidt, and D. Haarer, J. Opt. Soc. Am. B 15, 2473 (1998).
  13. W. Krolikowski, N. Akhmediev, and B. Luther-Davies, Opt. Lett. 21, 782 (1996).
  14. J. S. Schildkraut and A. V. Buettner, J. Appl. Phys. 72, 1888 (1992).
  15. P. J. Melz, J. Chem. Phys. 57, 1694 (1972).
  16. J. X. Mack, L. B. Schein, and A. Peled, Phys. Rev. B 39, 7500 (1989).
  17. A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, Appl. Phys. Lett. 70, 1515 (1997).
  18. Both approximations were justified physically, in terms of the inequality Ed< <E< < Eq, where Eq and Ed are the limiting space-charge field and the diffusion field, respectively, evaluated at a soliton width of not less than 5mm.
  19. J. W. Wu, J. Opt. Soc. Am. B 8, 142 (1991).
  20. For a typical example from Ref. 19, with mD≅10 D, Da0=5×10-23 cm3, and E=100V/mm, the induced dipole contributes only one sixtieth of the total dipole energy.
  21. M. Segev and A. J. Agranat, Opt. Lett. 22, 1299 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited