Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photoacoustic spectroscopy using quantum-cascade lasers

Not Accessible

Your library or personal account may give you access

Abstract

Photoacoustic spectra of ammonia and water vapor were recorded by use of a continuous-wave quantum-cascade distributed-feedback (QC-DFB) laser at 8.5 μm with a 16-mW power output. The gases were flowed through a cell that was resonant at 1.6 kHz, and the QC-DFB source was temperature tuned over 35 nm for generation of spectra or was temperature stabilized on an absorption feature peak to permit real-time concentration measurements. A detection limit of 100 parts in 109 by volume ammonia at standard temperature and pressure was obtained for a 1-Hz bandwidth in a measurement time of 10 min.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers

Daniel Hofstetter, Mattias Beck, Jérôme Faist, Markus Nägele, and Markus W. Sigrist
Opt. Lett. 26(12) 887-889 (2001)

Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers

B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho
Opt. Lett. 25(9) 666-668 (2000)

Ammonia detection by using quantum-cascade laser photoacoustic spectroscopy

Milton B. Filho, Marcelo G. da Silva, Marcelo S. Sthel, Delson U. Schramm, Helion Vargas, Andras Miklós, and Peter Hess
Appl. Opt. 45(20) 4966-4971 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved