OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 25, Iss. 1 — Jan. 1, 2000
  • pp: 46–48

Lateral resolution enhancement with standing evanescent waves

George E. Cragg and Peter T. C. So  »View Author Affiliations


Optics Letters, Vol. 25, Issue 1, pp. 46-48 (2000)
http://dx.doi.org/10.1364/OL.25.000046


View Full Text Article

Acrobat PDF (112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A high-resolution fluorescence microscopy technique has been developed that achieves a lateral resolution of better than one sixth of the emission wavelength (FWHM). By use of a total-internal-reflection geometry, standing evanescent waves are generated that spatially modulate the excitation of the sample. An enhanced two-dimensional image is formed from a weighted sum of images taken at different phases and directions of the standing wave. The performance of such a system is examined through theoretical calculations of both the point-spread function and the optical transfer function.

© 2000 Optical Society of America

OCIS Codes
(170.0180) Medical optics and biotechnology : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(180.3170) Microscopy : Interference microscopy
(180.5810) Microscopy : Scanning microscopy

Citation
George E. Cragg and Peter T. C. So, "Lateral resolution enhancement with standing evanescent waves," Opt. Lett. 25, 46-48 (2000)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-25-1-46


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Schrader, S. W. Hell, and H. T. M. van der Voort, J. Appl. Phys. 84, 4033 (1998).
  2. T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).
  3. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, Science 251, 1468 (1991).
  4. G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
  5. B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, Nature 366, 44 (1993).
  6. V. Krishnamurthi, B. Bailey, and F. Lanni, Proc. SPIE 2655, 18 (1996).
  7. D. Axelrod, Annu. Rev. Biophys. Bioeng. 13, 247 (1984).
  8. J. R. Abney, B. A. Scalettar, and N. L. Thompson, Biophys. J. 61, 542 (1992).
  9. P. E. Hanninen, S. W. Hell, J. Salo, and E. Soini, Appl. Phys. Lett. 66, 1698 (1995).
  10. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
  11. S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994).
  12. C. Y. Dong, P. T. C. So, T. French, and E. Gratton, Biophys. J. 69, 2234 (1995).
  13. T. A. Klar and S. W. Hell, Opt. Lett. 24, 954 (1999).
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), p. 143.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited