Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optoelectronic delay-time controller for laser pulses

Not Accessible

Your library or personal account may give you access

Abstract

A dc-voltage-controlled optoelectronic delay line for continuous tuning of the relative delay time of an optical pulse train generated from a gain-switched laser diode is demonstrated. A maximum tunable range delay time of 3.9 ns (2 periods) for optical pulses at a 500-MHz repetition rate is reported, which corresponds to a phase shift of as much as 4π. The tuning responsivity and resolution of the current apparatus are 0.54 ps/mV and <0.2 ps, respectively. The measured timing fluctuation and long-term drift at any delay time are 0.13 ps and 20 fs/min, respectively. This scheme further permits the simultaneous phase tracking of the laser pulse train to unknown signals generated from the device under test.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
40-GHz pulse-train generation at 1.5 µm with a chirped fiber grating as a frequency multiplier

S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen
Opt. Lett. 25(19) 1481-1483 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.