OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 25, Iss. 13 — Jul. 1, 2000
  • pp: 942–944

Two-dimensional photonic crystal couplers for unidirectional light output

Attila Mekis, A. Dodabalapur, R. E. Slusher, and J. D. Joannopoulos  »View Author Affiliations


Optics Letters, Vol. 25, Issue 13, pp. 942-944 (2000)
http://dx.doi.org/10.1364/OL.25.000942


View Full Text Article

Acrobat PDF (94 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the use of two-dimensional photonic crystal slabs to improve the directionality of output coupling from planar waveguides and distributed-feedback lasers. We present the theory underlying the operation of such structures and design criteria for emission in desired directions. As an example, we demonstrate a vertical coupler that is integrated with an organic distributed-feedback laser, use computer simulations to find its coupling constant and efficiency, and then discuss its feasibility.

© 2000 Optical Society of America

OCIS Codes
(130.1750) Integrated optics : Components
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(230.1950) Optical devices : Diffraction gratings

Citation
Attila Mekis, A. Dodabalapur, R. E. Slusher, and J. D. Joannopoulos, "Two-dimensional photonic crystal couplers for unidirectional light output," Opt. Lett. 25, 942-944 (2000)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-25-13-942


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Katzir, A. C. Livanos, and A. Yariv, Appl. Phys. Lett. 30, 225 (1977).
  2. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).
  3. D. Heitmann and R. V. Pole, Appl. Phys. Lett. 37, 585 (1980).
  4. G. Hatakoshi, H. Fujima, and K. Goto, Appl. Opt. 23, 1749 (1984).
  5. P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1142 (1995).
  6. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, Appl. Phys. Lett. 75, 316 (1999).
  7. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, Appl. Phys. Lett. 74, 7 (1999).
  8. M. Meier, A. Dodabalapur, J. A. Rogers, R. E. Slusher, A. Timko, A. Mekis, C. A. Murray, R. Ruel, and O. Nalamasu, J. Appl. Phys. 86, 3502 (1999).
  9. A. Dodabalapur, M. Berggren, R. E. Slusher, Z. Bao, A. Timko, P. Schiortino, E. Laskowski, H. E. Katz, and O. Nalamasu, IEEE J. Sel. Topics Quantum Electron. 4, 67 (1998).
  10. H. Kogelnik, in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer-Verlag, Berlin, 1988), p. 56.
  11. See, for example, K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, Boca Raton, Fla. 1993).
  12. G. Mur, IEEE Trans. Electromag. Comput. EMC-23, 377 (1981).
  13. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, San Diego, Calif., 1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited