OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 25, Iss. 7 — Apr. 1, 2000
  • pp: 478–480

Interfacial shape and contact-angle measurement of transparent samples with confocal interference microscopy

David G. Fischer and Ben Ovryn  »View Author Affiliations

Optics Letters, Vol. 25, Issue 7, pp. 478-480 (2000)

View Full Text Article

Acrobat PDF (305 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A model has been developed that predicts the effective optical path through a thick, refractive specimen on a reflective substrate, as measured with a scanning confocal interference microscope equipped with a high-numerical-aperture objective. Assuming that the effective pinhole of the confocal microscope has an infinitesimal diameter, only one ray in the illumination bundle (the magic ray) contributes to the differential optical path length (OPL). A pinhole with finite diameter, however, allows rays within a small angular cone centered on the magic ray to contribute to the OPL. The model was incorporated into an iterative algorithm that allows the measured phase to be corrected for refractive errors by use of an a priori estimate of the sample profile. The algorithm was validated with a reflected-light microscope equipped with a phase-shifting laser-feedback interferometer to measure the interface shape and the 68° contact angle of a silicone-oil drop on a coated silicon wafer.

© 2000 Optical Society of America

OCIS Codes
(120.2830) Instrumentation, measurement, and metrology : Height measurements
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(170.1790) Medical optics and biotechnology : Confocal microscopy
(180.3170) Microscopy : Interference microscopy

David G. Fischer and Ben Ovryn, "Interfacial shape and contact-angle measurement of transparent samples with confocal interference microscopy," Opt. Lett. 25, 478-480 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).
  2. S. Calixto and M. Ornelas-Rodriquez, Opt. Lett. 24, 1212 (1999).
  3. R. Grunwald, H. Mischke, and W. Rehak, Appl. Opt. 38, 4117 (1999).
  4. B. T. Teipen and D. L. MacFarlane, Appl. Opt. 38, 2040 (1999).
  5. Z. L. Liau, D. W. Nam, and R. G. Waarts, Appl. Opt. 33, 7371 (1994).
  6. E. Sackmann, Science 271, 43 (1996).
  7. G. Wiegand, K. R. Neumaier, and E. Sackmann, Appl. Opt. 37, 6892 (1998).
  8. T. R. Scheuerman, A. K. Camper, and M. A. Hamilton, J. Colloid Interface Sci. 208, 23 (1998).
  9. K. R. Willson and S. Garoff, Colloids Surf. A 89, 263 (1994).
  10. B. Ovryn and J. H. Andrews, ASME, FEDSM97 240–3209 (American Society of Mechanical Engineers, New York, 1997), p. 1.
  11. T. Young, Philos. Trans. 95, 65 (1805).
  12. Lord Rayleigh, Proc. R. Soc. London Ser. A 92, 184 (1915).
  13. F. Bashforth and J. C. Adams, An Attempt to Test the Theories of Capillary Action (Cambridge U. Press, Cambridge, 1883).
  14. P. Concus, J. Fluid Mech. 34, 481 (1968).
  15. The laser feedback interferometer is based on a He–Ne cw laser (l=632.8 nm). The spot size for the 0.8-NA objective is 290 nm, and the sampling step size is 290 nm/pixel. See B. Ovryn and J. H. Andrews, Opt. Lett. 23, 1078 (1998) ; Appl. Opt. 38, 1959 (1999).
  16. C. W. Extrand, J. Colloid Interface Sci. 157, 72 (1993).
  17. D. G. Fischer and B. Ovryn, Proc. SPIE 3782, 378 (1999).
  18. C. J. R. Sheppard and K. G. Larkin, Appl. Opt. 34, 4731 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited