OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 26, Iss. 18 — Sep. 15, 2001
  • pp: 1421–1423

Energy transfer at optical frequencies to silicon-on-insulator structures

Brian J. Soller, Howard R. Stuart, and Dennis G. Hall  »View Author Affiliations

Optics Letters, Vol. 26, Issue 18, pp. 1421-1423 (2001)

View Full Text Article

Acrobat PDF (118 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The refractive-index distribution that is intrinsic to the silicon-on-insulator (SOI) material system makes it possible for optical-frequency guided waves to be confined by the SOI silicon layer. The same refractive-index distribution is unusual among nonmetals in that it is possible for those SOI guided waves to interact strongly with nearby optical-frequency radiators, absorbers, and scatterers (e.g., atoms, molecules, and nanoparticles). We calculate the guided-mode excitation efficiency for an exterior particle near the SOI surface and show that it can attain values greater than 80% under appropriate conditions, thus showing that the SOI waveguide system is an attractive platform for the study of optical-frequency surface interactions.

© 2001 Optical Society of America

OCIS Codes
(160.3130) Materials : Integrated optics materials
(160.6000) Materials : Semiconductor materials
(230.7370) Optical devices : Waveguides

Brian J. Soller, Howard R. Stuart, and Dennis G. Hall, "Energy transfer at optical frequencies to silicon-on-insulator structures," Opt. Lett. 26, 1421-1423 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. See, for example, the issue on silicon-on-insulator technology (seven papers), MRS Bull. 23, 13–40 (1998).
  2. See, for example, L. Geppert, IEEE Spectrum 36, 52 (1999).
  3. See also the announcements and SOI-related material posted on these Web pages: www.chips.ibm.com/news/soi.html and www.eet.com/news/98/1020news/soi.html.
  4. K. Drexhage, in Progress in Optics, E. Wolt, ed. (North-Holland, Amsterdam, 1974), Vol. 12 pp. 163–232.
  5. W. R. Holland and D. G. Hall, Phys. Rev. Lett. 52, 1041 (1984).
  6. H. Morawitz, Phys. Rev. 187, 1792 (1969).
  7. J. M. Wylie and J. E. Sipe, Phys. Rev. A 30, 1185 (1984).
  8. W. H. Weber and C. F. Eagen, Opt. Lett. 4, 236 (1979).
  9. B. N. Kurdi and D. G. Hall, Opt. Lett. 13, 175 (1988).
  10. R. M. Emmons, B. N. Kurdi, and D. G. Hall, IEEE J. Quantum Electron. 28, 157 (1992).
  11. G. W. Ford and W. H. Weber, Phys. Rep. 113, 195 (1984).
  12. See, for example, W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990), p. 66.
  13. The number of waveguide modes that each structure supports increases at discrete values of the product n1hD1/2/l ; hence the stepwise behavior in Fig. 4.
  14. H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 69, 2327 (1996).
  15. H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 73, 3815 (1998).
  16. H. R. Stuart and D. G. Hall, Phys. Rev. Lett. 80, 5663 (1998).
  17. C. L. Schow, R. Li, J. D. Schaub, and J. C. Campbell, IEEE J. Quantum Electron. 35, 1478 (1999).
  18. Biosensors that make use of the surface plasmon field at a metal–dielectric interface are already receiving a great deal of attention. See, for example, J. Homola, S. S. Yee, and G. Gauglitz, Sensors Actuators B 54, 3 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited