OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 26, Iss. 21 — Nov. 1, 2001
  • pp: 1684–1686

Multiple-objective microscopy with three-dimensional resolution near 100 nm and a long working distance

O. Haeberlé, C. Xu, A. Dieterlen, and S. Jacquey  »View Author Affiliations

Optics Letters, Vol. 26, Issue 21, pp. 1684-1686 (2001)

View Full Text Article

Acrobat PDF (178 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The resolution of microscopes is limited by the sizes of their point-spread functions. The invention of confocal, theta, and 4Pi microscopes has permitted the classic Abbe limit to be exceeded. We propose the use of a combination of 4Pi and theta microscopy to decrease resolution by using four illumination objectives and two detection objectives. Using middle numerical aperture, long-working-distance objectives yielded a resolution near 100 nm in the three dimensions, which opens the possibility of exploring large volumes with a high resolution.

© 2001 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.6880) Imaging systems : Three-dimensional image acquisition
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy

O. Haeberlé, C. Xu, A. Dieterlen, and S. Jacquey, "Multiple-objective microscopy with three-dimensional resolution near 100 nm and a long working distance," Opt. Lett. 26, 1684-1686 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).
  2. D. A. Agard, Y. Hiraoka, P. Shaw, and J. W. Sedat, in Fluorescence Microscopy in Three Dimensions, D. L. Taylor and Y. Wang, eds., Vol. 30 of Methods in Cell Biology (Academic, San Diego, Calif., 1989), p. 353.
  3. S. W. Hell, E. Lehtonen, and E. H. K. Stelzer, in New Dimensions of Visualization in Biomedical Microscopies, A. Kritte, ed. (Verlag Chemie, Weinheim, Germany, 1992), p. 145.
  4. M. Minsky, Scanning 10, 128 (1988).
  5. S. W. Hell and E. H. K. Stelzer, Opt. Commun. 93, 277 (1992).
  6. E. H. K. Stelzer and S. Lindek, Opt. Commun. 111, 536 (1994).
  7. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
  8. B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 349 (1959).
  9. C. J. R. Sheppard and P. Török, Bioimaging 5, 205 (1989).
  10. P. D. Higdon, P. Török, and T. Wilson, J. Microsc. 193, 127 (1999).
  11. S. W. Hell, in Nonlinear and Two-Photon Induced Fluorescence, J. Lakowicz, ed., Vol. 5 of Topics in Fluorescence Microscopy (Plenum, New York, 1997), p. 361.
  12. M. Nagorni and S. W. Hell, J. Opt. Soc. Am. A 18, 49 (2001).
  13. R. Clappier, Olympus France SA, 75 Rue d’Areueil 94533 Rungis, France (personal communication, 2001).
  14. T. Tanikawa and T. Arai, IEEE Trans. Robot. Autom. 15, 152 (1999).
  15. J. Swoger, S. Lindek, T. Stefany, F.-M. Haar, and E. H. K. Stelzer, Rev. Sci. Instrum. 69, 2956 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited