OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 26, Iss. 22 — Nov. 15, 2001
  • pp: 1803–1805

Elliptic vortices of electromagnetic wave fields

S. Chávez-Cerda, J. C. Gutiérrez-Vega, and G. H. C. New  »View Author Affiliations

Optics Letters, Vol. 26, Issue 22, pp. 1803-1805 (2001)

View Full Text Article

Acrobat PDF (494 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the existence of elliptic vortices of electromagnetic scalar wave fields. The corresponding intensity profiles are formed by propagation-invariant confocal elliptic rings. We have found that copropagation of this kind of vortex occurs without interaction. The results presented here also apply for physical systems described by the (2+1) -dimensional Schrödinger equation.

© 2001 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation

S. Chávez-Cerda, J. C. Gutiérrez-Vega, and G. H. C. New, "Elliptic vortices of electromagnetic wave fields," Opt. Lett. 26, 1803-1805 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. F. Nye and M. V. Berry, Proc. R. Soc. London Ser. A 336, 165–190 (1974).
  2. Y. S. Kivshar and B. Luther-Davis, Phys. Rep. 298, 81–197 (1998).
  3. D. L. Feder, A. A. Svidzinsky, A. L. Fetter, and C. W. Clark, Phys. Rev. Lett. 86, 564–567 (2001).
  4. I. S. Aranson, A. R. Bishop, I. Daruka, and V. M. Vinokur, Phys. Rev. Lett. 80, 1770–1773 (1998).
  5. C. O. Weis, M. Vaupel, K. Staliunas, G. Slekys, and V. B. Taranenko, Appl. Phys. B 68, 151–168 (1999).
  6. S. Chávez-Cerda, G. S. McDonald, and G. H. C. New, Opt. Commun. 123, 225–233 (1996).
  7. K. T. Gahagan and G. A. Swartzlander, J. Opt. Soc. Am. B 16, 533–537 (1999).
  8. G. A. Swartzlander, Jr., Opt. Lett. 26, 497–499 (2001).
  9. G. Indebetouw, J. Mod. Opt. 40, 73–87 (1993).
  10. D. Rozas, Z. S. Sacks, and G. A. Swartzlander, Jr., Phys. Rev. Lett. 79, 3399–3402 (1997).
  11. D. Rozas and G. A. Swartzlander, Jr., Opt. Lett. 25, 126–128 (2000).
  12. G. Molina-Terriza, J. Recolons, and L. Torner, Opt. Lett. 25, 1135–1137 (2000).
  13. G. Molina-Terriza, E. M. Wright, and L. Torner, Opt. Lett. 26, 163–165 (2001).
  14. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  15. N. W. McLachlan, Theory and Applications of Mathieu Functions (Oxford U. Press, London, 1951).
  16. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed. (Cambridge U. Press, Cambridge, 1927), Chaps. XVIII, XIX.
  17. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 5th ed. (Academic, London, 1994).
  18. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964), Chap. 20, pp. 721–750.
  19. S. Chávez-Cerda, J. Mod. Opt. 46, 923–930 (1999).
  20. A. Vasara, J. Turunen, and A. T. Friberg, J. Opt. Soc. Am. A 6, 1748–1754 (1989).
  21. A. A. Inayat-Hussain, J. Math. Phys. 32, 669–675 (1991).
  22. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, Opt. Lett. 25, 1493–1495 (2000).
  23. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, E. Tepichín, R. M. Rodríguez-Dagnino, S. Chávez-Cerda, and G. H. C. New, Opt. Commun. 195, 35–40 (2001).
  24. N. B. Simpson, K. Dholakia, L. Allen, and M. Padgett, Opt. Lett. 22, 52–54 (1997).
  25. H. C. Manoharan, C. P. Lutz, and D. M. Eigler, Nature 403, 512–515 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited