OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 26, Iss. 23 — Dec. 1, 2001
  • pp: 1837–1839

Resonator-enhanced optical dipole trap for fermionic lithium atoms

A. Mosk, S. Jochim, H. Moritz, Th. Elsässer, M. Weidemüller, and R. Grimm  »View Author Affiliations

Optics Letters, Vol. 26, Issue 23, pp. 1837-1839 (2001)

View Full Text Article

Acrobat PDF (86 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a novel optical dipole trap that is based on enhancement of the optical power density of a Nd:YAG laser beam in a resonator. The trap is particularly suited for experiments with ultracold gases, as it combines a potential depth of the order of 1 mK with storage times of several tens of seconds. We study the interactions in a gas of fermionic lithium atoms in our trap and observe the influence of spin-changing collisions and off-resonant photon scattering. A key element in reaching long storage times is the use of an ultralow-noise laser. The dependence of storage time on laser noise is investigated.

© 2001 Optical Society of America

OCIS Codes
(020.2070) Atomic and molecular physics : Effects of collisions
(020.7010) Atomic and molecular physics : Laser trapping

A. Mosk, S. Jochim, H. Moritz, Th. Elsässer, M. Weidemüller, and R. Grimm, "Resonator-enhanced optical dipole trap for fermionic lithium atoms," Opt. Lett. 26, 1837-1839 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. Grimm, M. Weidemüller, Y. B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000).
  2. J. Ye, D. W. Vernooy, H. J. Kimble, Phys. Rev. Lett. 83, 4987 (1999).
  3. C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, H. J. Kimble, Science 287, 1447 (2000).
  4. P. W. H. Pinkse, T. Fischer, P. Maunz, G. Rempe, Nature 404, 365 (2000).
  5. A. Sinatra, J. F. Roch, K. Vigneron, Ph. Grelu, J.-Ph. Poizat, K. Wang, P. Grangier, Phys. Rev. A 57, 2980 (1998).
  6. P. Horak, G. Hechenblaikner, K. M. Gheri, H. Stecher, H. Ritsch, Phys. Rev. Lett. 79, 4974 (1997).
  7. V. Vuletic` S. Chu, Phys. Rev. Lett. 84, 3787 (2000).
  8. A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, R. G. Hulet, Science 291, 2570 (2001).
  9. F. Schreck, G. Ferrari, K. L. Corwin, J. Cubizolles, L. Khayovich, M.-O. Mewes, C. Salomon, Phys. Rev. A 64, 011402 (2001).
  10. M. Houbiers, H. T. C. Stoof, W. I. McAlexander, R. G. Hulet, Phys. Rev. A 57, R1497 (1998).
  11. K. M. O'Hara, M. E. Gehm, S. R. Granade, S. Bali, J. E. Thomas, Phys. Rev. Lett. 85, 2092 (2000).
  12. T. W. Hänsch B. Couillaud, Opt. Commun. 35, 441 (1980).
  13. This calculation is based on a two-level approximation that takes into account rotating and counterrotating terms of the D lines of Li.
  14. U. Schünemann, H. Engler, M. Zielonkowski, M. Weidmüller, R. Grimm, Opt. Commun. 158, 263 (1998).
  15. G. M. Bruun C. W. Clark, Phys. Rev. A 61, 061601 (2000).
  16. M. E. Gehm, K. M. O'Hara, T. A. Savard, J. E. Thomas, Phys. Rev. A 58, 3914 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited