OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 26, Iss. 3 — Feb. 1, 2001
  • pp: 131–133

Fabrication of microgratings on the ends of standard optical fibers by the electrostatic self-assembly monolayer process

Francisco J. Arregui, Ignacio R. Matias, Kristie L. Cooper, and Richard O. Claus  »View Author Affiliations


Optics Letters, Vol. 26, Issue 3, pp. 131-133 (2001)
http://dx.doi.org/10.1364/OL.26.000131


View Full Text Article

Acrobat PDF (156 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The electrostatic self-assembly monolayer process has been utilized for what is believed to be the first time to deposit quarter-wavelength stacks on the end faces of cleaved and polished optical fibers. Standard multimode optical fibers as well as single-mode optical fibers were used as substrates with different coating materials to fabricate broadband filters, and the experimentally measured spectral responses of these devices are shown. These optical filter structures were employed to develop chemical sensors that use an unperturbed reference wavelength to normalize the output signal.

© 2001 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(310.1620) Thin films : Interference coatings
(310.1860) Thin films : Deposition and fabrication

Citation
Francisco J. Arregui, Ignacio R. Matias, Kristie L. Cooper, and Richard O. Claus, "Fabrication of microgratings on the ends of standard optical fibers by the electrostatic self-assembly monolayer process," Opt. Lett. 26, 131-133 (2001)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-26-3-131


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Decher, Science 277, 1232 (1997).
  2. A. Rosidian, Y. Liu, and R. O. Claus, Adv. Mater. 10, 1087 (1998).
  3. Y. Liu, A. Wang, and R. O. Claus, Appl. Phys. Lett. 71, 2265 (1997).
  4. K. M. Lenahan, Y. X. Wang, Y. Liu, R. O. Claus, J. R. Heflin, D. Marciu, and C. Figura, Adv. Mater. 10, 853 (1998).
  5. M. Yamada and S. S. Shiratori, Sens. Actuators B 64, 124 (2000).
  6. F. J. Arregui, I. R. Matias, Y. Liu, K. M. Lenahan, and R. O. Claus, Opt. Lett. 24, 596 (1999).
  7. F. J. Arregui, Y. Liu, I. R. Matias, and R. O. Claus, Sens. Actuators B 59, 54 (1999).
  8. F. J. Arregui, K. L. Cooper, Y. Liu, I. R. Matias, and R. O. Claus, IEICE Trans. Electron. E83-C, 360 (2000).
  9. G. Decher and J. Schmidt, Progr. Colloid Polym. Sci. 89, 160 (1992).
  10. M. C. Hsieh, R. J. Farris, and T. J. McCarthy, Polym. Mater. Sci. Eng. 81, 136 (1999).
  11. Y. Lvov, G. Decher, and H. Mohwald, Langmuir 9, 481 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited