OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 28, Iss. 11 — Jun. 1, 2003
  • pp: 875–877

Ultraviolet illumination thermoreflectance for the temperature mapping of integrated circuits

Gilles Tessier, Stphane Hol, and Danile Fournier  »View Author Affiliations

Optics Letters, Vol. 28, Issue 11, pp. 875-877 (2003)

View Full Text Article

Acrobat PDF (491 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Noncontact optical methods such as thermoreflectance, which measure temperature-induced optical reflectivity changes, are particularly suitable for obtaining high-resolution temperature mappings on integrated circuits. Unfortunately, the coefficient linking the variations of temperature and reflectivity depends on the nature of the material and can be modified when optical interferences occur in the Si3N4 -based encapsulation layers protecting the circuits. We show that taking advantage of the deep UV absorption of encapsulation layers yields temperature mapping that is independent of the underlying materials. A single calibration is therefore enough to yield the temperature on any point of the uniform and thermally thin encapsulation layer. This simplification and its potential for high resolution should make UV thermoreflectance more attractive to the semiconductor industry.

© 2003 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.6780) Instrumentation, measurement, and metrology : Temperature

Gilles Tessier, Stphane Hol, and Danile Fournier, "Ultraviolet illumination thermoreflectance for the temperature mapping of integrated circuits," Opt. Lett. 28, 875-877 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. E. Stephens and F. N. Sinnadurai, J. Phys. E 7, 641 (1974).
  2. G. B. M. Fiege, V. Feige, J. C. H. Phang, M. Maywald, S. Görlich, and L. J. Balk, Microelectron. Reliab. 38, 957 (1998).
  3. A. Rosencwaig, J. Opsal, W. L. Smith, and D. L. Willenborg, Appl. Phys. Lett. 46, 1013 (1985).
  4. B. C. Forget, S. Grauby, D. Fournier, P. Gleyzes, and A. C. Boccara, Electron. Lett. 33, 1688 (1997).
  5. P. W. Epperlein, Jpn. J. Appl. Phys. 32, 5514 (1993).
  6. T. Phan, S. Dilhaire, V. Quintard, D. Lewis, and W. Claeys, Microelectron. J. 29, 170 (1998).
  7. G. Gosch, ed., Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, San Diego, Calif., 1998).
  8. V. Quintard, G. Deboy, S. Dilhaire, D. Lewis, T. Phan, and W. Claeys, Microelectron. Eng. 31, 291 (1996).
  9. R. Abid and F. Miserey, C. R. Acad. Sci. Ser. 2 319, 631 (1994).
  10. J. Bauer, Phys. Status Solidi A 39, 411 (1977).
  11. H. R. Philipp, J. Electrochem. Soc. 120, 295 (1973).
  12. G. Tessier, S. Holé, and D. Fournier, “Microscope a thermoreflectance pour la mesure de la temperature d’un circuit intégré,” French patent 0116490 (December 19, 2001).
  13. P. A. Heimann and R. Urstadt, Appl. Opt. 29, 495 (1990).
  14. M. Switkes, M. Rothschild, and M. Salvermoser, Opt. Lett. 26, 1182 (2001).
  15. G. Tessier, S. Holé, and D. Fournier, Appl. Phys. Lett. 78, 2267 (2001).
  16. S. Grauby, B. C. Forget, S. Holé, and D. Fournier, Rev. Sci. Instrum. 70, 3603 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited