OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 28, Iss. 11 — Jun. 1, 2003
  • pp: 878–880

Partially coherent vortex beams with a separable phase

Galina V. Bogatyryova, Christina V. Fel’de, Peter V. Polyanskii, Sergey A. Ponomarenko, Marat S. Soskin, and Emil Wolf  »View Author Affiliations


Optics Letters, Vol. 28, Issue 11, pp. 878-880 (2003)
http://dx.doi.org/10.1364/OL.28.000878


View Full Text Article

Acrobat PDF (370 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and experimentally implement a method for the generation of a wide class of partially spatially coherent vortex beams whose cross-spectral density has a separable functional form in polar coordinates. We study phase singularities of the spectral degree of coherence of the new beams.

© 2003 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.4070) Coherence and statistical optics : Modes
(260.3160) Physical optics : Interference
(350.5030) Other areas of optics : Phase

Citation
Galina V. Bogatyryova, Christina V. Fel’de, Peter V. Polyanskii, Sergey A. Ponomarenko, Marat S. Soskin, and Emil Wolf, "Partially coherent vortex beams with a separable phase," Opt. Lett. 28, 878-880 (2003)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-11-878


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. F. Nye and M. V. Berry, Proc. R. Soc. London Ser. A 336, 165 (1974).
  2. M. S. Soskin and M. V. Vasnetsov, in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 2001), Vol. 42, p. 219.
  3. L. Allen, M. J. Padgett, and M. Babikier, in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 2000), Vol. 34, p. 291.
  4. F. Gori, M. Santarsiero, R. Borghi, and S. Vicalvi, J. Mod. Opt. 45, 539 (1998).
  5. S. A. Ponomarenko, J. Opt. Soc. Am. A 18, 150 (2001).
  6. G. S. Agarwal, J. Opt. Soc. Am. A 16, 2619 (1999).
  7. As is customary, by singular beams we mean beams with phase singularities.
  8. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), Sec. 4.3.2.
  9. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 16.
  10. We define h(s) to be equal to unity for nonnegative values of its argument and to zero otherwise.
  11. V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, J. Mod. Opt. 39, 985 (1992).
  12. I. Gradstein and I. Ryzhik, Tables of Integrals, Series and Products, 5th ed. (Academic, New York, 1980).
  13. The power of the source Pn is equal to Pn≡λnm d2ψnm(ρ, 0)|2.
  14. Th. Young, Philos. Trans. R. Soc. London 94, 1 (1804).
  15. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999), Sec. 8.9.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited