OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 28, Iss. 11 — Jun. 1, 2003
  • pp: 938–940

Wet-etch optimization of free-standing terahertz frequency-selective structures

Frank Baumann, William A. Bailey, Jr., Ahmer Naweed, William D. Goodhue, and Andrew J. Gatesman  »View Author Affiliations

Optics Letters, Vol. 28, Issue 11, pp. 938-940 (2003)

View Full Text Article

Acrobat PDF (445 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Free-standing frequency-selective surfaces consisting of approximately 10-μm -thick copper films with cross-aperture arrays are found to be tunable toward lower frequencies by means of wet chemical etching. Center frequencies were tuned from 1.57 to 1.53 THz while maintaining high transmittance. Wet etching also adjusts bandwidth, peak transmittance, and sidelobe transmittance. The advantage of the wet-etch technique is demonstrated by employment of these devices as bandpass filters for difluoromethane-based terahertz lasers. Adjustment in aperture dimensions because of etching results in suppression of a competing laser line (133.93μm) by 15 dB while maintaining high transmittance at the operating wavelength of 192.06μm .

© 2003 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(310.6860) Thin films : Thin films, optical properties

Frank Baumann, William A. Bailey, Jr., Ahmer Naweed, William D. Goodhue, and Andrew J. Gatesman, "Wet-etch optimization of free-standing terahertz frequency-selective structures," Opt. Lett. 28, 938-940 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. For a review, see T. K. Wu, ed., Frequency Selective Surface and Grid Array (Wiley, New York, 1995).
  2. M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soulokous, Phys. Rev. B 52, 11744 (1995).
  3. S. Gupta, G. Tuttle, M. Sigalas, and K.-M. Ho, Appl. Phys. Lett. 71, 2412 (1997).
  4. M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, Appl. Phys. Lett. 80, 3500 (2002).
  5. R. Ulrich, Infrared Phys. 7, 37 (1967).
  6. D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, and R. M. Weikle II, Appl. Opt. 33, 6046 (1994).
  7. S. T. Chase and R. D. Joseph, Appl. Opt. 22, 1774 (1983).
  8. K. D. Möller, J. B. Warren, J. B. Heaney, and C. Kotecki, Appl. Opt. 35, 6210 (1996).
  9. C. Winnewisser, F. Lewen, J. Weinzierl, and H. Helm, Appl. Opt. 38, 3961 (1999).
  10. P. A. Krug, D. H. Dawes, R. C. McPhedran, W. Wright, J. C. Macfarlane, and L. B. Whitbourn, Opt. Lett. 14, 931 (1989).
  11. D. A. Weitz, W. J. Skocpol, and M. Tinkham, Opt. Lett. 3, 13 (1978).
  12. R. D. Rawcliffe and C. M. Randall, Appl. Opt. 6, 1353 (1967).
  13. N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, Appl. Phys. Lett. 75, 1577 (1999).
  14. L. W. Henderson, Introduction to PMM Version 4, Tech. Rep. 725347–1 (Ohio State University, Columbus, Oh., 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited