OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 28, Iss. 12 — Jun. 15, 2003
  • pp: 1019–1021

Fluorescence tomography with simulated data based on the equation of radiative transfer

Alexander D. Klose and AndreasH. Hielscher  »View Author Affiliations

Optics Letters, Vol. 28, Issue 12, pp. 1019-1021 (2003)

View Full Text Article

Acrobat PDF (211 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The quantification of a nonuniform quantum yield or fluorophore absorption distribution is of major interest in molecular imaging of biological tissue. We introduce what is believed to be the first fluorescence image reconstruction algorithm based on the equation of radiative transfer that recovers the spatial distribution of light-emitting fluorophores inside a highly scattering medium from measurements made on the surface of the medium. We obtain images of either the quantum yield or the fluorophore absorption.

© 2003 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6960) Medical optics and biotechnology : Tomography

Alexander D. Klose and AndreasH. Hielscher, "Fluorescence tomography with simulated data based on the equation of radiative transfer," Opt. Lett. 28, 1019-1021 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. Weissleder and U. Mahmood, Radiology 219, 316 (2001).
  2. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
  3. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, Opt. Lett. 21, 158 (1996).
  4. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, Appl. Opt. 36, 2260 (1997).
  5. J. Chang, H. L. Graber, and R. L. Barbour, J. Opt. Soc. Am. A 14, 288 (1997).
  6. H. Jiang, Appl. Opt. 37, 5337 (1998).
  7. V. Ntziachristos and R. Weissleder, Opt. Lett. 26, 893 (2001).
  8. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. Sevick-Muraca, Proc. Natl. Acad. Sci. USA 99, 9619 (2002).
  9. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, Phys. Med. Biol. 43, 1285 (1998).
  10. A. D. Kim and A. Ishimaru, Appl. Opt. 37, 5313 (1998).
  11. R. Aronson and N. Corngold, J. Opt. Soc. Am. A 16, 1066 (1999).
  12. S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, Med. Phys. 27, 252 (2000).
  13. B. Chen, K. Stamnes, and J. J. Stamnes, Appl. Opt. 40, 6356 (2001).
  14. A. H. Hielscher, A. D. Klose, and K. M. Hanson, IEEE Trans. Med. Imag. 18, 262 (1999).
  15. A. D. Klose and A. H. Hielscher, J. Quant. Spectrosc. Radiat. Transfer 72, 715 (2002).
  16. M. L. Adams and E. W. Larsen, Prog. Nucl. Eng. 40, 3 (2002).
  17. B. G. Carlson and K. D. Lathrop, in Computing Methods in Reactor Physics, H. Greenspan, ed. (Gordon and Breach, New York, 1968), pp. 166–266.
  18. A. D. Klose and A. H. Hielscher, Inverse Problems 19, 387 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited