OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 28, Iss. 15 — Aug. 1, 2003
  • pp: 1320–1322

Ultrahigh light transmission through a C-shaped nanoaperture

Xiaolei Shi, Lambertus Hesselink, and Robert L. Thornton  »View Author Affiliations

Optics Letters, Vol. 28, Issue 15, pp. 1320-1322 (2003)

View Full Text Article

Acrobat PDF (517 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical resolution beyond the diffraction limit can be achieved by use of a metallic nanoaperture in a near-field optical system. Conventional nanoapertures have very low power throughput. Using a numerical finite-difference time domain method, we discovered a unique C-shaped aperture that provides ~3 orders of magnitude more power throughput than a conventional square aperture with a similar near-field spot size of ~0.1λ Microwave experiments at 6 GHz quantitatively confirmed the simulated transmission enhancement. The high transmission of the C-aperture—or one of the related shapes—is linked to both a propagation mode in the aperture and local surface plasmons.

© 2003 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(110.0180) Imaging systems : Microscopy
(120.7000) Instrumentation, measurement, and metrology : Transmission
(350.3950) Other areas of optics : Micro-optics
(350.5610) Other areas of optics : Radiation

Xiaolei Shi, Lambertus Hesselink, and Robert L. Thornton, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320-1322 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. E. A. Ash and G. Nicholls, Nature 237, 510 (1972).
  2. D. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
  3. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, Ultramicroscopy 13, 227 (1984).
  4. G. A. Valaskovic, M. Holton, and G. H. Morrison, Appl. Opt. 34, 1215 (1995).
  5. D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, Appl. Phys. Lett. 68, 2491 (1996).
  6. L. Novotny and C. Hafner, Phys. Rev. E 50, 4094 (1994).
  7. B. I. Yakobson and M. A. Paesler, Ultramicroscopy 57, 204 (1995).
  8. F. C. Fischer and M. Zapletal, Ultramicroscopy 42–44, 393 (1992).
  9. U. C. Fischer, J. Koglin, and H. Fuchs, J. Microsc. 176, 231 (1994).
  10. T. Yatsui, K. Itsumi, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 80, 2257 (2002).
  11. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Appl. Phys. Lett. 70, 1354 (1997).
  12. H. A. Bethe, Phys. Rev. 66, 163 (1944).
  13. D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, Adv. Mater. 11, 860 (1999).
  14. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, Opt. Lett. 26, 1972 (2001).
  15. X. Shi and L. Hesselink, Jpn. J. Appl. Phys. 41, 1632 (2002).
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000).
  17. Y. Leviatan, J. Appl. Phys. 60, 1577 (1986).
  18. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited