OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 28, Iss. 19 — Oct. 1, 2003
  • pp: 1778–1780

Measurement of birefringence in thin-film waveguides by Rayleigh scattering

S. Janz, P. Cheben, H. Dayan, and R. Deakos  »View Author Affiliations


Optics Letters, Vol. 28, Issue 19, pp. 1778-1780 (2003)
http://dx.doi.org/10.1364/OL.28.001778


View Full Text Article

Acrobat PDF (397 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method of measuring birefringence in slab and ridge waveguides based on the coherent superposition of Rayleigh light scattering from TE and TM polarized modes is described and demonstrated in silica-on-silicon waveguides. A measurement accuracy of approximately 10-6 has been achieved. This method is used to determine the evolution of waveguide birefringence with annealing temperature in phosphorous-doped glass waveguides. The measured birefringence increases rapidly with annealing temperatures up to 800 °C but remains unchanged for higher-temperature anneals. We interpret this threshold as the temperature above which glass can flow.

© 2003 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3130) Integrated optics : Integrated optics materials
(160.6030) Materials : Silica
(220.4840) Optical design and fabrication : Testing

Citation
S. Janz, P. Cheben, H. Dayan, and R. Deakos, "Measurement of birefringence in thin-film waveguides by Rayleigh scattering," Opt. Lett. 28, 1778-1780 (2003)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-19-1778


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Sunami, Y. Itoh, and K. Sato, J. Appl. Phys. 41, 5115 (1970).
  2. H. Takahashi, Y. Hibino, and I. Nishi, Opt. Lett. 17, 499 (1992).
  3. S. M. Ohja, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, and J. Taylor, Electron. Lett. 34, 78 (1998).
  4. A. Kilian, J. Kirchoff, B. Kuhlow, G. Przymbel, and W. Wischman, J. Lightwave Technol. 18, 193 (2000).
  5. J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Dalage, and M. Davies, IEEE Photon. Technol. Lett. 11, 1 (1999).
  6. M. Zirngibl, C. H. Joyner, I. W. Schulz, Th. Gaigge, and C. Dragone, Electron. Lett. 29, 201 (1993).
  7. S. Janz, E. Frlan, H. Dai, F. Chatenoud, and R. Normandin, Opt. Lett. 17, 1718 (1992).
  8. T. Matsuura, J. Kobayashi, S. Ando, T. Maruno, S. Sasaki, and F. Yamamoto, Appl. Opt. 38, 966 (1999).
  9. D. Johlen, G. Stolze, H. Renner, and E. Brinkmeyer, J. Lightwave Technol. 18, 185 (2000).
  10. R. Stolte and R. Ulrich, Opt. Lett. 20, 142 (1995).
  11. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).
  12. K. Wörhoff, P. V. Lambeck, and A. Driessen, J. Lightwave Technol. 17, 1401 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited