OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Vol. 28, Iss. 22 — Nov. 15, 2003
  • pp: 2177–2179

Fractional Hankel transform studied by charge-amplitude state representations and complex fractional Fourier transformation

Hong-yi Fan  »View Author Affiliations


Optics Letters, Vol. 28, Issue 22, pp. 2177-2179 (2003)
http://dx.doi.org/10.1364/OL.28.002177


View Full Text Article

Acrobat PDF (85 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Starting from a complex fractional Fourier transformation [Opt. Lett. 28, 680 (2003)], it is shown that the integral kernel of a fractional Hankel transformation is equivalent to the matrix element of an appropriate operator in the charge-amplitude state representations; i.e., the fractional Hankel transformation is endowed with a definite physical meaning (definite quantum-mechanical representation transform).

© 2003 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.4690) Fourier optics and signal processing : Morphological transformations
(270.0270) Quantum optics : Quantum optics

Citation
Hong-yi Fan, "Fractional Hankel transform studied by charge-amplitude state representations and complex fractional Fourier transformation," Opt. Lett. 28, 2177-2179 (2003)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-22-2177


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. V. Namias, J. Inst. Math. Appl. 25, 241 (1980).
  2. A. W. Lohmann, J. Opt. Soc. Am. A 10, 2181 (1993).
  3. D. Mendlovic and H. M. Ozaktas, J. Opt. Soc. Am. A 10, 1875 (1993).
  4. A. C. McBride and F. H. Kerr, IMA J. Appl. Math. 39, 159 (1987).
  5. P. Pellat-Finet, Opt. Lett. 19, 388 (1994).
  6. D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, Appl. Opt. 33, 6188 (1994).
  7. L. Bernardo and O. D. D. Soares, Opt. Commun. 110, 517 (1994).
  8. H.-Y. Fan and H.-L. Lu, Opt. Lett. 28, 680 (2003).
  9. H.-Y. Fan and J. R. Klauder, Phys. Rev. A 49, 704 (1994).
  10. H.-Y. Fan and Y. Fan, Phys. Rev. A 54, 958 (1996).
  11. H.-Y. Fan and X. Ye, Phys. Rev. A 51, 3343 (1995).
  12. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).
  13. L. Yu, Y. Lu, X. Zeng, M. Huang, M. Chen, W. Huang, and Z. Zhu, Opt. Lett. 23, 1158 (1998).
  14. A. Erdelryi, Higher Transcendental Functions, The Batemann Manuscript Project (McGraw-Hill, New York, 1953).
  15. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed. (Springer-Verlag, Berlin, 1966).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited