OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 28, Iss. 22 — Nov. 15, 2003
  • pp: 2216–2218

Dissipative soliton in an amplifier with a Bragg grating

Boren Luo and Sien Chi  »View Author Affiliations

Optics Letters, Vol. 28, Issue 22, pp. 2216-2218 (2003)

View Full Text Article

Acrobat PDF (533 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A dissipative soliton in an amplifier with a Bragg grating is numerically investigated by direct simulation of Maxwell–Bloch equations. The result of the simulation indicates that a solitary wave can exist in such a medium. However, the pulse shape of the dissipative soliton is asymmetrical because of the gain saturation effect. This gain saturation effect results from the high power of the ultrashort dissipative soliton. The influence of amplifier gain on the solitary wave is also investigated.

© 2003 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Boren Luo and Sien Chi, "Dissipative soliton in an amplifier with a Bragg grating," Opt. Lett. 28, 2216-2218 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. A. Bélanger, L. Gagnon, and C. Paré, Opt. Lett. 14, 943 (1989).
  2. V. S. Grigoryan and T. S. Muradyan, J. Opt. Soc. Am. B 8, 1757 (1991).
  3. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York, 1995).
  4. S. Trillo and W. Torruellas, Spatial Solitons (Springer-Verlag, Berlin, 2001).
  5. L. W. Liou and G. P. Agrawal, Opt. Commun. 124, 500 (1996).
  6. S. Chi, C. W. Chang, and S. Wen, Opt. Commun. 106, 193 (1994).
  7. G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
  8. I. M. Uzunov, M. Golles, and F. Lederer, Opt. Lett. 22, 1406 (1997).
  9. V. S. Grigoryan, Opt. Lett. 21, 1882 (1996).
  10. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2003).
  11. R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, Phys. Rev. A 52, 3082 (1995).
  12. T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguchi, Electron. Lett. 28, 1818 (1992).
  13. J. Shmulovich, A. Wong, Y. H. Wong, P. C. Becker, A. J. Bruce, and R. Adar, Electron. Lett. 28, 1181 (1992).
  14. C. M. de Sterke and J. E. Sipe, in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1994), Vol. XXXIII, pp. 203–260.
  15. A. E. Kozhekin, G. Kurizki, and B. Malomed, Phys. Rev. Lett. 81, 3647 (1998).
  16. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
  17. A. A. Sukhorukov and Y. S. Kivshar, J. Opt. Soc. Am. B 19, 772 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited