OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 28, Iss. 7 — Apr. 1, 2003
  • pp: 513–515

Local spectral time-domain method for electromagnetic wave propagation

Gang Bao, G. W. Wei, and Shan Zhao  »View Author Affiliations

Optics Letters, Vol. 28, Issue 7, pp. 513-515 (2003)

View Full Text Article

Acrobat PDF (479 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore the feasibility of using a local spectral time-domain (LSTD) method to solve Maxwell’s equations that arise in optical and electromagnetic applications. The discrete singular convolution (DSC) algorithm is implemented in the LSTD method for spatial derivatives. Fourier analysis of the dispersive error of the DSC algorithm indicates that its grid density requirement for accurate simulations can be as low as approximately two grid points per wavelength. The analysis is further confirmed by numerical experiments. Our study reveals that the LSTD method has the potential to yield high resolution for solving large-scale electromagnetic problems.

© 2003 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(230.7370) Optical devices : Waveguides
(290.5820) Scattering : Scattering measurements

Gang Bao, G. W. Wei, and Shan Zhao, "Local spectral time-domain method for electromagnetic wave propagation," Opt. Lett. 28, 513-515 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. T. A. Driscoll and B. Fornberg, J. Comput. Phys. 140, 47 (1998).
  2. Q. H. Liu, IEEE Trans. Geosci. Remote Sens. 37, 917 (1999).
  3. K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).
  4. Z. Haras and S. Ta’asan, J. Comput. Phys. 114, 265 (1994).
  5. J. B. Cole, Comput. Phys. 11, 287 (1997).
  6. E. Turkel, in Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method, A. Taflove, ed. (Artech House, Boston, Mass., 1998), Chap. 2.
  7. H. M. Jurgens and D. W. Zingg, SIAM J. Sci. Comput. 22, 1675 (2000).
  8. M. Krumpholz and J. Oliger, IEEE Trans. Microwave Theory Tech. 44, 555 (1996).
  9. L. P. B. Katehi, J. F. Harvey, and E. Tentzeris, in Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method, A. Taflove, ed. (Artech House, Boston, Mass., 1998), Chap. 3.
  10. G. W. Wei, J. Chem. Phys. 110, 8930 (1999).
  11. G. Bao, G. W. Wei, and A. H. Zhou, “Analysis of regularized Whittaker–Kotel’nikov–Shannon sampling expansion” submitted to SIAM J. Numer. Anal.
  12. G. W. Wei, Y. B. Zhao, and Y. Xiang, Int. J. Numer. Meth. Eng. 55, 913 (2002).
  13. G. W. Wei, J. Phys. A 33, 4935 (2000).
  14. S. Y. Yang, Y. C. Zhou, and G. W. Wei, Comput. Phys. Commun. 143, 113 (2002).
  15. D. W. Zingg and T. T. Chisholm, Appl. Numer. Math. 31, 227 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited