OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 10 — May. 14, 2004
  • pp: 1084–1086

Isotropic photonic gaps in a circular photonic crystal

N. Horiuchi, Y. Segawa, T. Nozokido, K. Mizuno, and H. Miyazaki  »View Author Affiliations

Optics Letters, Vol. 29, Issue 10, pp. 1084-1086 (2004)

View Full Text Article

Acrobat PDF (1178 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated the optical properties of a circular photonic crystal (CPC) for which the distance between lattices was systematically distributed. The transmission spectra of CPC composed of alumina cylinders were examined in the frequency region from 0 to 20 GHz. We show that photonic gaps are obtained not only in CPCs but also in phase-shifted CPCs. The isotropic photonic gaps are evidenced by changes in the incident angle of a millimeter wave.

© 2004 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(220.2740) Optical design and fabrication : Geometric optical design

N. Horiuchi, Y. Segawa, T. Nozokido, K. Mizuno, and H. Miyazaki, "Isotropic photonic gaps in a circular photonic crystal," Opt. Lett. 29, 1084-1086 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. Ohtaka, Phys. Rev. B 19, 5057 (1979).
  2. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, New York, 1995).
  4. T. F. Krauss, R. M. De La Rue, and S. Brand, Nature 383, 699 (1996).
  5. Y. S. Chan, C. T. Chan, and Z. Y. Liu, Phys. Rev. Lett. 80, 956 (1998).
  6. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, Nature 404, 740 (2000).
  7. S. David, A. Chelnokov, and J.-M. Lourtioz, Opt. Lett. 25, 1001 (2000).
  8. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, Phys. Rev. B 61, 13458 (2000).
  9. C. Jin, X. Meng, B. Cheng, Z. Li, and D. Zhang, Phys. Rev. B 63, 195107 (2001).
  10. H. Miyazaki, M. Hase, H. T. Miyazaki, Y. Kurokawa, and N. Shinya, Phys. Rev. B 67, 235109 (2001). Their model, however, is unique in that they do not assume any periodic lattice as a starting mother lattice.
  11. J. Xu, J. Song, C. Li, and K. Ueda, Opt. Commun. 182, 343 (2000).
  12. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, Opt. Express 9, 319 (2001), http://www.opticsexpress.org.
  13. H. A. Yousif and S. Köhler, J. Opt. Soc. Am. A 5, 1085 (1988).
  14. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Reversez, C. M. de Sterke, and L. C. Botten, J. Opt. Soc. Am. B 19, 2322 (2002).
  15. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
  16. S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, Opt. Lett. 27, 1400 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited