OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 10 — May. 14, 2004
  • pp: 1147–1149

Optical dipole trap inside a laser resonator

Marc Eichhorn, Marcel Mudrich, and Matthias Weidemüller  »View Author Affiliations

Optics Letters, Vol. 29, Issue 10, pp. 1147-1149 (2004)

View Full Text Article

Acrobat PDF (720 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first realization, to our knowledge, of an optical dipole trap inside the active resonator of a laser. The concept, which is demonstrated with a CO<sub>2</sub> laser (λ=10.6 μm), combines the advantages of optical power enhancement (up to 1.3-kW peak power) with the intrinsic stability of laser intensity as a result of the feedback of the active laser medium. Two kinds of trapping geometries are presented: a Gaussian trap in a transverse TEM<sub>00</sub> mode and a boxlike transverse confinement in a superposition of transverse modes. In addition, longitudinal superlattices are created by two-frequency operation of the laser. Transfer efficiencies of up to 50% from a cesium magneto-optical trap are achieved. Storage times (τ=0.3s) are mainly limited by the background gas pressure. Possible sources of additional loss of atoms are discussed.

© 2004 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(140.3410) Lasers and laser optics : Laser resonators

Marc Eichhorn, Marcel Mudrich, and Matthias Weidemüller, "Optical dipole trap inside a laser resonator," Opt. Lett. 29, 1147-1149 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett. 57, 314 (1986).
  2. R. Grimm, M. Weidemüller, and Yu. B. Ovchninnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000).
  3. N. Friedman, A. Kaplan, and N. Davidson, Adv. At. Mol. Opt. Phys. 48, 99 (2002).
  4. C. Chin, V. Vuletić, A. J. Kerman, and S. Chu, Phys. Rev. Lett. 85, 2717 (2000).
  5. L. Khaykovich, N. Friedman, S. Baluschev, D. Fathi, and N. Davidson, Europhys. Lett. 50, 454 (2000).
  6. P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, Nature 404, 365 (2000).
  7. M. D. Barrett, J. A. Sauer, and M. S. Chapman, Phys. Rev. Lett. 87, 010404 (2001).
  8. S. R. Granade, M. E. Gehm, K. M. O'Hara, and J. E. Thomas, Phys. Rev. Lett. 88, 120405 (2002).
  9. S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Derschlag, and R. Grim, Science, November 13, 2003 (10.1126/science.1093280).
  10. A. Mosk, S. Jochim, H. Moritz, Th. Elsässer, R. Grimm, and M. Weidemüller, Opt. Lett. 26, 1837 (2001), and references therein.
  11. T. A. Savard, K. M. O'Hara, and J. E. Thomas, Phys. Rev. A 56, R1095 (1997).
  12. T. Takekoshi and R. Knize, Opt. Lett. 21, 77 (1996).
  13. C. Monroe, W. Swann, H. Robinson, and C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
  14. H. Engler, T. Weber, M. Mudrich, R. Grimm, and M. Weidemüller, Phys. Rev. A 62, R031402 (2000).
  15. W. J. Witteman, The CO2 Laser (Springer, Heidelberg, 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited