OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 12 — Jun. 15, 2004
  • pp: 1339–1341

Cavity ringdown strain gauge

Peter B. Tarsa, Diane M. Brzozowski, Paul Rabinowitz, and Kevin K. Lehmann  »View Author Affiliations

Optics Letters, Vol. 29, Issue 12, pp. 1339-1341 (2004)

View Full Text Article

Acrobat PDF (355 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Biconical tapered single-mode fiber, which is common in many telecommunications components, offers an alternative sensor to typical optical fiber strain gauges that are susceptible to temperature and pressure effects and require expensive and sophisticated signal acquisition systems. Cavity ringdown spectroscopy, a technique commonly applied to high-sensitivity chemical analysis, offers detection sensitivity advantages that can be used to improve strain measurement with biconical tapers. Combining these two technologies in a spatially extended resonator, we demonstrate a minimum detectable change in ringdown time of 0.08%, corresponding to a minimum detectable displacement of 4.8 nm, and a sensitivity to strain as small as 79 n∈/√Hz over a 5-mm taper length.

© 2004 Optical Society of America

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(130.6010) Integrated optics : Sensors
(230.5750) Optical devices : Resonators

Peter B. Tarsa, Diane M. Brzozowski, Paul Rabinowitz, and Kevin K. Lehmann, "Cavity ringdown strain gauge," Opt. Lett. 29, 1339-1341 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. B. Lee, Opt. Fiber Technol. 9, 57 (2003).
  2. T. Valis, D. Hogg, and R. M. Measures, IEEE Photon. Technol. Lett. 2, 227 (1990).
  3. S. M. Melle, K. Liu, and R. M. Measures, Appl. Opt. 32, 3601 (1993).
  4. F. J. Arregui, I. R. Matias, and M. Lopez-Amo, Sensors Actuators 79, 90 (2000).
  5. J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, Anal. Chem. 75, 4599 (2003).
  6. P. B. Tarsa, P. Rabinowitz, and K. K. Lehmann, Chem. Phys. Lett. 383, 297 (2004).
  7. M. Gupta, H. Jiao, and A. O'Keefe, Opt. Lett. 27, 1878 (2002).
  8. T. von Lerber and M. W. Sigrist, Appl. Opt. 41, 3567 (2002).
  9. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. J 138, 343 (1991).
  10. R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, IEE Proc. J 138, 355 (1991).
  11. P. M. Shankar, L. C. Bobb, and H. D. Krumboltz, J. Lightwave Technol. 9, 832 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited