OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 13 — Jul. 1, 2004
  • pp: 1500–1502

Tunable resonant optical microcavities by self-assembled templating

G. Vijaya Prakash, L. Besombes, T. Kelf, Jeremy J. Baumberg, P. N. Bartlett, and M. E. Abdelsalam  »View Author Affiliations

Optics Letters, Vol. 29, Issue 13, pp. 1500-1502 (2004)

View Full Text Article

Acrobat PDF (1113 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Micrometer-scale optical cavities are produced by a combination of template sphere self-assembly and electrochemical growth. Transmission measurements of the tunable microcavities show sharp resonant modes with Q factors of >300 and 25-fold local enhancement of light intensity. The presence of transverse optical modes confirms the lateral confinement of photons. Calculations show that submicrometer mode volumes are feasible. The small mode volumes of these microcavities promise to lead to a wide range of applications in microlasers, atom optics, quantum information, biophotonics, and single-molecule detection.

© 2004 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.4780) Lasers and laser optics : Optical resonators
(260.3910) Physical optics : Metal optics
(320.7090) Ultrafast optics : Ultrafast lasers

G. Vijaya Prakash, L. Besombes, T. Kelf, Jeremy J. Baumberg, P. N. Bartlett, and M. E. Abdelsalam, "Tunable resonant optical microcavities by self-assembled templating," Opt. Lett. 29, 1500-1502 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. E. Seigman, Lasers (University Science, Mill Valley, Calif., 1986).
  2. H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, Rev. Mod. Phys. 71, 1591 (1999).
  3. H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, Appl. Phys. Lett. 69, 3140 (1996).
  4. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
  5. J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, Appl. Phys. Lett. 69, 449 (1996).
  6. J. M. Gerard and B. Gayral, J. Lightwave Technol. 17, 2089 (1999).
  7. J. U. Nockel, G. Bourdon, E. Le Ru, R. Adams, I. Robert, J. M. Moison, and I. Abram, Phys. Rev. E 62, 8677 (2000).
  8. R. A. Abram, S. Brand, M. A. Kaliteevski, and V. V. Nikolaev, Phys. Status Solidi A 183, 183 (2001).
  9. R. Jia, D.-S. Jiang, P.-H. Tan, and B.-Q. Sun, Appl. Phys. Lett. 79, 153 (2001).
  10. J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, Electron. Lett. 25, 1123 (1989).
  11. K. L. Lear and E. D. Jones, MRS Bull. 27, 497 (2002).
  12. P. N. Bartlett, P. R. Birkin, and M. A. Ghanem, Chem. Commun. 2000, 1671.
  13. S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, Appl. Phys. Lett. 83, 767 (2003).
  14. V. G. Chavez, K. V. Sepulveda, S. C. Cerda, W. Sibbett, and K. Dholakial, Phys. Rev. A 66, 63402 (2002).
  15. P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, Appl. Phys. Lett. 81, 3519 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited