Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

First- and second-order statistics of optical near fields

Not Accessible

Your library or personal account may give you access

Abstract

The statistical properties of the intensity in close proximity to highly scattering, randomly inhomogeneous media are investigated. Whereas the intensity probability density function obeys the same law irrespective of the distance z from the interface, the second-order intensity correlation length changes for distances smaller than the wavelength. Contrary to predictions of the conventional coherence theory, the corresponding field correlation length can be smaller than the wavelength of light.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Light spectra in the near field of random media

A. Apostol and A. Dogariu
Opt. Lett. 29(9) 920-922 (2004)

Anisotropy of near-field speckle patterns

Cheng Liu and Seung-Han Park
Opt. Lett. 30(13) 1602-1604 (2005)

Near-field speckles produced by random self-affine surfaces and their contrast transitions

Chuanfu Cheng, Chunxiang Liu, Xiaorong Ren, Man Liu, Shuyun Teng, and Zhizhan Xu
Opt. Lett. 28(17) 1531-1533 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved