Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion

Not Accessible

Your library or personal account may give you access

Abstract

We propose a new method for generating a parabolic pulse by use of a dispersion-decreasing fiber with normal group-velocity dispersion. When a hyperbolic dispersion-decreasing structure is employed, the pulse evolves into a linearly chirped pulse with an exact parabolic intensity profile without radiating dispersive waves. The highly linear chirp in the parabolic pulse allows for efficient and high-quality pulse compression.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Asymptotic characteristics of parabolic similariton pulses in optical fiber amplifiers

Christophe Finot, Guy Millot, and John M. Dudley
Opt. Lett. 29(21) 2533-2535 (2004)

Parabolic pulse generation with active or passive dispersion decreasing optical fibers

Christophe Finot, Benoit Barviau, Guy Millot, Alexej Guryanov, Alexej Sysoliatin, and Stefan Wabnitz
Opt. Express 15(24) 15824-15835 (2007)

Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey
Opt. Lett. 25(24) 1753-1755 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved