OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 29, Iss. 7 — Apr. 1, 2004
  • pp: 694–696

Low-loss deposition of solgel-derived silica films on tapered fibers

G. Kakarantzas, S. G. Leon-Saval, T. A. Birks, and P. St. J. Russell  »View Author Affiliations

Optics Letters, Vol. 29, Issue 7, pp. 694-696 (2004)

View Full Text Article

Acrobat PDF (454 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Films of porous silica are deposited on the uniform waists of tapered fibers in minutes by a modified solgel dip coating method, inducing less than 0.2 dB of loss. The coated tapers are an ideal platform for realizing all-fiber devices that exploit evanescent-field interactions with the deposited porous film. As an example we demonstrate structural long-period gratings in which a periodic index variation in the film arises from the porosity variation produced by spatially varying exposure of the waist to a scanned CO<sub>2</sub> laser beam. The long period grating is insensitive to temperature up to 800 °C.

© 2004 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2310) Fiber optics and optical communications : Fiber optics
(160.6060) Materials : Solgel

G. Kakarantzas, S. G. Leon-Saval, T. A. Birks, and P. St. J. Russell, "Low-loss deposition of solgel-derived silica films on tapered fibers," Opt. Lett. 29, 694-696 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. J. Brinker and G. W. Scherer, Sol-Gel Science (Academic, Boston, Mass., 1990).
  2. I. M. Thomas, in Sol-Gel Optics Processing and Applications, L. C. Klein, ed. (Kluwer Academic, Boston, 1994).
  3. R. M. Almeida, J. Non-Cryst. Solids 259, 176 (1999).
  4. H. S. Mackenzie and F. P. Payne, Electron. Lett. 26, 130 (1990).
  5. W. M. Henry and F. P. Payne, Opt. Quantum Electron. 27, 185 (1995).
  6. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
  7. T. Erdogan, J. Opt. Soc. Am A 14, 1760 (1997).
  8. S. W. James and R. P. Tatam, Meas. Sci. Technol. 14, R49 (2003).
  9. I. K. Hwang, S. H. Yun, and B. Y. Kim, Opt. Lett. 24, 1263 (1999).
  10. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
  11. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. LeRoux, and P. St. J. Russell, Opt. Lett. 26, 1137 (2001).
  12. G. Kakarantzas, T. A. Birks, and P. St. J. Russell, Opt. Lett. 27, 1013 (2002).
  13. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  14. X. J. Xu, Opt. Lett. 23, 509 (1998).
  15. D. J. Taylor, D. P. Birnie III, and B. D. Fabes, J. Mater. Res. 10, 1429 (1995).
  16. N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic, San Diego, Calif., 1986).
  17. G. Ghosh, IEEE Photon. Technol. Lett. 6, 431 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited