OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 30, Iss. 13 — Jul. 1, 2005
  • pp: 1740–1742

Laser ablation of silicon in water with nanosecond and femtosecond pulses

Jun Ren, Michael Kelly, and Lambertus Hesselink  »View Author Affiliations

Optics Letters, Vol. 30, Issue 13, pp. 1740-1742 (2005)

View Full Text Article

Acrobat PDF (177 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe laser ablation of Si under water by 5 ns, 355 nm and 100 fs, 800 nm pulses. Compared to that in air, an approximately twofold improvement in the ablation rate is found in water for femtosecond and nanosecond pulses. For higher laser irradiances, the plasma that forms at the water-air interface hampers further improvement of the ablation rate. We investigated the enhanced ablation process in water and found that the cavity-confinement geometry that increases the laser energy coupling to the target and allows more energy to be transferred to the cavity sidewalls plays an important role in the escalated material removal process. In addition, we show that the water layer that effectively reduces the oxidation and redeposition of the ablated debris is also responsible for improvements in the ablation process.

© 2005 Optical Society of America

OCIS Codes
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.4240) Ultrafast optics : Nanosecond phenomena
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

Jun Ren, Michael Kelly, and Lambertus Hesselink, "Laser ablation of silicon in water with nanosecond and femtosecond pulses," Opt. Lett. 30, 1740-1742 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. C. Gower, Opt. Express 7, 56 (2000).
  2. M. D. Shirk and P. A. Molian, J. Laser Appl. 10, 18 (1998).
  3. S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, J. Appl. Phys. 89, 2400 (2001). [CrossRef]
  4. X. Ding, Y. Kawaguchi, H. Niino, and A. Yabe, Appl. Phys. A: Mater. Sci. Process. 75, 641 (2002).
  5. Y. Li, J. Nishii, and Y. Jiang, Opt. Lett. 26, 1912 (2001).
  6. L. Berthe, R. Fabbro, P. Peyre, and E. Bartnicki, Eur. Phys. J. Appl. Phys. 3, 215 (1998). [CrossRef]
  7. A. Sollier, L. Berthe, and R. Fabbro, Eur. Phys. J. Appl. Phys. 16, 131 (2001).
  8. P. K. Kennedy, IEEE J. Quantum Electron. 31, 2241 (1995). [CrossRef]
  9. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).
  10. C. R. Phipps and R. W. Dreyfus, in Laser Ionization Mass Analysis, A.Vertes, R.Gijbels, and F.Adams, eds. (Wiley, 1993), pp. 369-431.
  11. J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, J. Appl. Phys. 83, 7488 (1998). [CrossRef]
  12. A. Philipp and W. Lauterborn, J. Fluid Mech. 36, 75 (1998).
  13. R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, Phys. Rev. B 62, 167 (2000).
  14. X. Zeng, S. S Mao, C. Liu, X. Mao, R. Greif, and R. E. Russo, Appl. Phys. Lett. 83, 240 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited