Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Resonance-temperature-insensitive phase-shifted long-period fiber gratings induced by surface deformation with anomalous strain characteristics

Not Accessible

Your library or personal account may give you access

Abstract

We report the fabrication of phase-shifted long-period fiber gratings by use of a CO2 laser with a surface deformation technique and a point-by-point method. Due to periodicities that are structurally induced by a heat source and refractive-index modulation caused by a perturbational photoelastic effect, the results of thermal testing show a grating temperature coefficient of 28pm°C at a range from 22 to 180 °C, indicating that the band rejections of the grating that is formed remain unchanged in their resonant strengths even at temperatures up to the fictive point of fiberglass. It is found for what is believed to be the first time that such a grating possesses an anomalous strain behavior of resonance with 1.52×104dBμϵ for the right notch and 7.05×105dBμϵ for the left notch.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber

Yinian Zhu, Ping Shum, Hui-Wen Bay, Min Yan, Xia Yu, Juanjuan Hu, Jianzhong Hao, and Chao Lu
Opt. Lett. 30(4) 367-369 (2005)

Wide-passband, temperature-insensitive, and compact π-phase-shifted long-period gratings in endlessly single-mode photonic crystal fiber

Yinian Zhu, Ping Shum, Hui-Wen Bay, Xiaoyan Chen, Ching-Hwee Tan, and Chao Lu
Opt. Lett. 29(22) 2608-2610 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved