OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 30, Iss. 14 — Jul. 15, 2005
  • pp: 1834–1836

Suppression of phase and supermode noise in a harmonic mode-locked erbium-doped fiber laser with a semiconductor-optical-amplifier-based high-pass filter

Gong-Ru Lin, Ming-Chung Wu, and Yung-Cheng Chang  »View Author Affiliations

Optics Letters, Vol. 30, Issue 14, pp. 1834-1836 (2005)

View Full Text Article

Acrobat PDF (108 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By operating an intracavity semiconductor-optical-amplifier- (SOA-) based high-pass filter at the nearly transparent current condition, the supermode noise (SMN), the relaxation oscillation, and the single-sideband (SSB) phase noise can be simultaneously suppressed in an actively mode-locked erbium-doped fiber laser (EDFL). The SOA at the nearly transparent condition enhances the SMN suppression ratio of the EDFL from 32 to 76 dB at the cost of the phase noise degrading from -114 to -104.2 dBc/Hz and broadening the pulse width from 36to61 ps. With an optical bandpass filter, the SSB phase noise and the SMN suppression ratio can be further improved to -110 dBc/Hz and 81 dB, respectively. The EDFL pulse can be further shortened to 3.1 ps with a time-bandwidth product of 0.63 after compression.

© 2005 Optical Society of America

OCIS Codes
(140.3500) Lasers and laser optics : Lasers, erbium
(140.4050) Lasers and laser optics : Mode-locked lasers
(250.5980) Optoelectronics : Semiconductor optical amplifiers

Gong-Ru Lin, Ming-Chung Wu, and Yung-Cheng Chang, "Suppression of phase and supermode noise in a harmonic mode-locked erbium-doped fiber laser with a semiconductor-optical-amplifier-based high-pass filter," Opt. Lett. 30, 1834-1836 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. Sanders, N. Park, J. W. Dawson, and K. J. Vahala, Appl. Phys. Lett. 61, 1889 (1992). [CrossRef]
  2. K. K. Gupta, D. Novak, and H. F. Liu, IEEE J. Quantum Electron. 36, 70 (2000). [CrossRef]
  3. E. Yoshida, K. Kimura, and M. Nakazawa, Electron. Lett. 31, 377 (1995). [CrossRef]
  4. M. Nakazawa, K. Kimura, and E. Yoshida, Electron. Lett. 32, 461 (1996). [CrossRef]
  5. H. Takara, S. Kawanishi, and M. Saruwatari, IEICE Trans. Electron. E81-C, 213 (1998).
  6. D. S. Seo, D. Y. Kim, and H. F. Liu, Electron. Lett. 32, 44 (1996). [CrossRef]
  7. L. Xu, I. Glesk, D. Rand, V. Baby, and P. R. Prucnal, Opt. Lett. 28, 780 (2003).
  8. K. Sato and H. Toba, IEEE J. Sel. Top. Quantum Electron. 7, 328 (2001). [CrossRef]
  9. L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002).
  10. D. von der Linde, Appl. Phys. B 39, 201 (1986). [CrossRef]
  11. T. Saitoh and T. Mukai, IEEE J. Quantum Electron. 23, 1010 (1987). [CrossRef]
  12. C. H. Henry, J. Lightwave Technol. 4, 288 (1986).
  13. K. Kikuchi, C.-E. Zah, and T.-P. Lee, IEEE J. Quantum Electron. 27, 416 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited